home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-16 | 23.4 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06lV'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 6c 56 00 00 28 07 00 00 |TUTOR 06|lV..(...|
|00000010| 00 17 4f 07 0d 0b 00 4e | 6f 2e 20 20 54 68 65 20 |..O....N|o. The |
|00000020| 11 33 79 11 31 2d 69 6e | 74 65 72 63 65 70 74 20 |.3y.1-in|tercept |
|00000030| 69 73 20 63 6f 72 72 65 | 63 74 2e 20 20 48 6f 77 |is corre|ct. How|
|00000040| 65 76 65 72 2c 20 74 68 | 65 20 11 33 78 11 31 2d |ever, th|e .3x.1-|
|00000050| 69 6e 74 65 72 63 65 70 | 74 73 20 61 72 65 20 77 |intercep|ts are w|
|00000060| 72 6f 6e 67 2e 20 20 0d | 0a 00 20 20 20 20 20 20 |rong. .|.. |
|00000070| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000080| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000090| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 11 31 4c 65 | .2|2....1Le|
|000000a0| 74 74 69 6e 67 20 11 33 | 79 20 11 31 62 65 20 30 |tting .3|y .1be 0|
|000000b0| 2c 20 77 65 20 6f 62 74 | 61 69 6e 20 74 68 65 20 |, we obt|ain the |
|000000c0| 65 71 75 61 74 69 6f 6e | 20 30 20 3d 20 11 33 78 |equation| 0 = .3x|
|000000d0| 20 20 11 31 2b 20 34 11 | 33 78 20 11 31 2d 20 35 | .1+ 4.|3x .1- 5|
|000000e0| 2c 20 77 68 69 63 68 20 | 66 61 63 74 6f 72 73 20 |, which |factors |
|000000f0| 61 73 20 0d 0a 00 0d 0b | 00 30 20 3d 20 28 11 33 |as .....|.0 = (.3|
|00000100| 78 20 11 31 2b 20 35 29 | 28 11 33 78 20 11 31 2d |x .1+ 5)|(.3x .1-|
|00000110| 20 31 29 2e 20 20 53 65 | 74 74 69 6e 67 20 65 61 | 1). Se|tting ea|
|00000120| 63 68 20 66 61 63 74 6f | 72 20 65 71 75 61 6c 20 |ch facto|r equal |
|00000130| 74 6f 20 30 20 61 6e 64 | 20 73 6f 6c 76 69 6e 67 |to 0 and| solving|
|00000140| 20 66 6f 72 20 11 33 78 | 11 31 2c 20 77 65 0d 0a | for .3x|.1, we..|
|00000150| 00 0d 0b 00 6f 62 74 61 | 69 6e 20 11 33 78 20 11 |....obta|in .3x .|
|00000160| 31 3d 20 2d 35 20 61 6e | 64 20 11 33 78 20 11 31 |1= -5 an|d .3x .1|
|00000170| 3d 20 31 2e 20 20 54 68 | 75 73 2c 20 74 68 65 20 |= 1. Th|us, the |
|00000180| 11 33 78 11 31 2d 69 6e | 74 65 72 63 65 70 74 73 |.3x.1-in|tercepts|
|00000190| 20 61 72 65 20 28 2d 35 | 2c 20 30 29 20 61 6e 64 | are (-5|, 0) and|
|000001a0| 20 28 31 2c 20 30 29 2e | 0d 0a 00 00 17 4f 07 0d | (1, 0).|.....O..|
|000001b0| 0b 00 57 72 6f 6e 67 2e | 20 20 4c 65 74 74 69 6e |..Wrong.| Lettin|
|000001c0| 67 20 11 33 78 20 11 31 | 3d 20 30 2c 20 77 65 20 |g .3x .1|= 0, we |
|000001d0| 6f 62 74 61 69 6e 20 11 | 33 79 20 11 31 3d 20 2d |obtain .|3y .1= -|
|000001e0| 35 2e 20 20 54 68 75 73 | 2c 20 74 68 65 20 11 33 |5. Thus|, the .3|
|000001f0| 79 11 31 2d 69 6e 74 65 | 72 63 65 70 74 20 69 73 |y.1-inte|rcept is|
|00000200| 20 28 30 2c 20 2d 35 29 | 2e 0d 0a 00 20 20 20 20 | (0, -5)|.... |
|00000210| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000220| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000230| 20 20 20 20 20 20 20 20 | 11 32 32 0d 0b 00 11 31 | |.22....1|
|00000240| 4c 65 74 74 69 6e 67 20 | 11 33 79 20 11 31 62 65 |Letting |.3y .1be|
|00000250| 20 30 2c 20 77 65 20 6f | 62 74 61 69 6e 20 74 68 | 0, we o|btain th|
|00000260| 65 20 65 71 75 61 74 69 | 6f 6e 20 30 20 3d 20 11 |e equati|on 0 = .|
|00000270| 33 78 20 20 11 31 2b 20 | 34 11 33 78 20 11 31 2d |3x .1+ |4.3x .1-|
|00000280| 20 35 2c 20 77 68 69 63 | 68 20 66 61 63 74 6f 72 | 5, whic|h factor|
|00000290| 73 20 61 73 20 0d 0a 00 | 0d 0b 00 30 20 3d 20 28 |s as ...|...0 = (|
|000002a0| 11 33 78 20 11 31 2b 20 | 35 29 28 11 33 78 20 11 |.3x .1+ |5)(.3x .|
|000002b0| 31 2d 20 31 29 2e 20 20 | 53 65 74 74 69 6e 67 20 |1- 1). |Setting |
|000002c0| 65 61 63 68 20 66 61 63 | 74 6f 72 20 65 71 75 61 |each fac|tor equa|
|000002d0| 6c 20 74 6f 20 30 20 61 | 6e 64 20 73 6f 6c 76 69 |l to 0 a|nd solvi|
|000002e0| 6e 67 20 66 6f 72 20 11 | 33 78 11 31 2c 20 77 65 |ng for .|3x.1, we|
|000002f0| 0d 0a 00 0d 0b 00 6f 62 | 74 61 69 6e 20 11 33 78 |......ob|tain .3x|
|00000300| 20 11 31 3d 20 2d 35 20 | 61 6e 64 20 11 33 78 20 | .1= -5 |and .3x |
|00000310| 11 31 3d 20 31 2e 20 20 | 54 68 75 73 2c 20 74 68 |.1= 1. |Thus, th|
|00000320| 65 20 11 33 78 11 31 2d | 69 6e 74 65 72 63 65 70 |e .3x.1-|intercep|
|00000330| 74 73 20 61 72 65 20 28 | 2d 35 2c 20 30 29 20 61 |ts are (|-5, 0) a|
|00000340| 6e 64 20 28 31 2c 20 30 | 29 2e 0d 0a 00 00 17 4f |nd (1, 0|)......O|
|00000350| 07 0d 0b 00 57 72 6f 6e | 67 2e 20 20 4c 65 74 74 |....Wron|g. Lett|
|00000360| 69 6e 67 20 11 33 78 20 | 11 31 3d 20 30 2c 20 77 |ing .3x |.1= 0, w|
|00000370| 65 20 6f 62 74 61 69 6e | 20 11 33 79 20 11 31 3d |e obtain| .3y .1=|
|00000380| 20 2d 35 2e 20 20 54 68 | 75 73 2c 20 74 68 65 20 | -5. Th|us, the |
|00000390| 11 33 79 11 31 2d 69 6e | 74 65 72 63 65 70 74 20 |.3y.1-in|tercept |
|000003a0| 69 73 20 28 30 2c 20 2d | 35 29 2e 0d 0a 00 20 20 |is (0, -|5).... |
|000003b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000003c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000003d0| 20 20 20 20 20 20 20 20 | 20 20 11 32 32 0d 0b 00 | | .22...|
|000003e0| 11 31 4c 65 74 74 69 6e | 67 20 11 33 79 20 11 31 |.1Lettin|g .3y .1|
|000003f0| 62 65 20 30 2c 20 77 65 | 20 6f 62 74 61 69 6e 20 |be 0, we| obtain |
|00000400| 74 68 65 20 65 71 75 61 | 74 69 6f 6e 20 30 20 3d |the equa|tion 0 =|
|00000410| 20 11 33 78 20 20 11 31 | 2b 20 34 11 33 78 20 11 | .3x .1|+ 4.3x .|
|00000420| 31 2d 20 35 2c 20 77 68 | 69 63 68 20 66 61 63 74 |1- 5, wh|ich fact|
|00000430| 6f 72 73 20 61 73 20 0d | 0a 00 0d 0b 00 30 20 3d |ors as .|.....0 =|
|00000440| 20 28 11 33 78 20 11 31 | 2b 20 35 29 28 11 33 78 | (.3x .1|+ 5)(.3x|
|00000450| 20 11 31 2d 20 31 29 2e | 20 20 53 65 74 74 69 6e | .1- 1).| Settin|
|00000460| 67 20 65 61 63 68 20 66 | 61 63 74 6f 72 20 65 71 |g each f|actor eq|
|00000470| 75 61 6c 20 74 6f 20 30 | 20 61 6e 64 20 73 6f 6c |ual to 0| and sol|
|00000480| 76 69 6e 67 20 66 6f 72 | 20 11 33 78 11 31 2c 20 |ving for| .3x.1, |
|00000490| 77 65 0d 0a 00 0d 0b 00 | 6f 62 74 61 69 6e 20 11 |we......|obtain .|
|000004a0| 33 78 20 11 31 3d 20 2d | 35 20 61 6e 64 20 11 33 |3x .1= -|5 and .3|
|000004b0| 78 20 11 31 3d 20 31 2e | 20 20 54 68 75 73 2c 20 |x .1= 1.| Thus, |
|000004c0| 74 68 65 20 11 33 78 11 | 31 2d 69 6e 74 65 72 63 |the .3x.|1-interc|
|000004d0| 65 70 74 73 20 61 72 65 | 20 28 2d 35 2c 20 30 29 |epts are| (-5, 0)|
|000004e0| 20 61 6e 64 20 28 31 2c | 20 30 29 2e 0d 0a 00 00 | and (1,| 0).....|
|000004f0| 17 4f 04 0d 0b 00 52 69 | 67 68 74 2e 20 20 54 68 |.O....Ri|ght. Th|
|00000500| 65 73 65 20 61 72 65 20 | 74 68 65 20 11 33 78 11 |ese are |the .3x.|
|00000510| 31 2d 20 61 6e 64 20 11 | 33 79 11 31 2d 69 6e 74 |1- and .|3y.1-int|
|00000520| 65 72 63 65 70 74 73 20 | 6f 66 20 74 68 65 20 67 |ercepts |of the g|
|00000530| 72 61 70 68 20 6f 66 20 | 74 68 65 20 67 69 76 65 |raph of |the give|
|00000540| 6e 20 0d 0a 00 65 71 75 | 61 74 69 6f 6e 2e 0d 0a |n ...equ|ation...|
|00000550| 00 00 17 4f 05 0d 0b 00 | 57 72 6f 6e 67 2e 20 20 |...O....|Wrong. |
|00000560| 54 68 65 20 11 33 78 11 | 31 2d 69 6e 74 65 72 63 |The .3x.|1-interc|
|00000570| 65 70 74 20 69 73 20 63 | 6f 72 72 65 63 74 2c 20 |ept is c|orrect, |
|00000580| 62 75 74 20 74 68 65 20 | 11 33 79 11 31 2d 69 6e |but the |.3y.1-in|
|00000590| 74 65 72 63 65 70 74 20 | 69 73 20 6e 6f 74 2e 20 |tercept |is not. |
|000005a0| 20 4c 65 74 74 69 6e 67 | 20 0d 0a 00 11 33 78 20 | Letting| ....3x |
|000005b0| 11 31 3d 20 30 2c 20 77 | 65 20 77 61 6e 74 20 74 |.1= 0, w|e want t|
|000005c0| 6f 20 73 6f 6c 76 65 20 | 32 11 33 79 20 11 31 2d |o solve |2.3y .1-|
|000005d0| 20 33 20 3d 20 30 20 66 | 6f 72 20 11 33 79 11 31 | 3 = 0 f|or .3y.1|
|000005e0| 2e 20 20 41 66 74 65 72 | 20 73 6f 6c 76 69 6e 67 |. After| solving|
|000005f0| 2c 20 77 65 20 6f 62 74 | 61 69 6e 20 74 68 65 20 |, we obt|ain the |
|00000600| 0d 0a 00 73 6f 6c 75 74 | 69 6f 6e 20 11 33 79 20 |...solut|ion .3y |
|00000610| 11 31 3d 20 33 2f 32 2e | 20 20 54 68 75 73 2c 20 |.1= 3/2.| Thus, |
|00000620| 74 68 65 20 11 33 79 11 | 31 2d 69 6e 74 65 72 63 |the .3y.|1-interc|
|00000630| 65 70 74 20 69 73 20 61 | 74 20 28 30 2c 20 33 2f |ept is a|t (0, 3/|
|00000640| 32 29 2e 0d 0a 00 00 17 | 4f 06 0d 0b 00 57 72 6f |2)......|O....Wro|
|00000650| 6e 67 2e 20 20 4c 65 74 | 74 69 6e 67 20 11 33 79 |ng. Let|ting .3y|
|00000660| 20 11 31 3d 20 30 2c 20 | 77 65 20 77 61 6e 74 20 | .1= 0, |we want |
|00000670| 74 6f 20 73 6f 6c 76 65 | 20 2d 11 33 78 20 11 31 |to solve| -.3x .1|
|00000680| 2d 20 33 20 3d 20 30 20 | 66 6f 72 20 11 33 78 11 |- 3 = 0 |for .3x.|
|00000690| 31 2e 20 20 41 66 74 65 | 72 20 73 6f 6c 76 69 6e |1. Afte|r solvin|
|000006a0| 67 2c 20 0d 0a 00 77 65 | 20 6f 62 74 61 69 6e 20 |g, ...we| obtain |
|000006b0| 11 33 78 20 11 31 3d 20 | 2d 33 20 66 6f 72 20 61 |.3x .1= |-3 for a|
|000006c0| 6e 20 11 33 78 11 31 2d | 69 6e 74 65 72 63 65 70 |n .3x.1-|intercep|
|000006d0| 74 20 61 74 20 28 2d 33 | 2c 20 30 29 2e 20 20 4c |t at (-3|, 0). L|
|000006e0| 65 74 74 69 6e 67 20 11 | 33 78 20 11 31 3d 20 30 |etting .|3x .1= 0|
|000006f0| 2c 20 77 65 20 73 6f 6c | 76 65 20 0d 0a 00 32 11 |, we sol|ve ...2.|
|00000700| 33 79 20 11 31 2d 20 33 | 20 3d 20 30 20 66 6f 72 |3y .1- 3| = 0 for|
|00000710| 20 11 33 79 11 31 2e 20 | 20 41 66 74 65 72 20 73 | .3y.1. | After s|
|00000720| 6f 6c 76 69 6e 67 2c 20 | 77 65 20 6f 62 74 61 69 |olving, |we obtai|
|00000730| 6e 20 11 33 79 20 11 31 | 3d 20 33 2f 32 2e 20 20 |n .3y .1|= 3/2. |
|00000740| 54 68 75 73 2c 20 74 68 | 65 20 0d 0a 00 11 33 79 |Thus, th|e ....3y|
|00000750| 11 31 2d 69 6e 74 65 72 | 63 65 70 74 20 69 73 20 |.1-inter|cept is |
|00000760| 61 74 20 28 30 2c 20 33 | 2f 32 29 2e 0d 0a 00 00 |at (0, 3|/2).....|
|00000770| 17 4f 03 0d 0b 00 52 69 | 67 68 74 2e 20 20 54 68 |.O....Ri|ght. Th|
|00000780| 65 73 65 20 61 72 65 20 | 74 68 65 20 69 6e 74 65 |ese are |the inte|
|00000790| 72 63 65 70 74 73 20 6f | 66 20 74 68 65 20 67 72 |rcepts o|f the gr|
|000007a0| 61 70 68 20 6f 66 20 74 | 68 65 20 67 69 76 65 6e |aph of t|he given|
|000007b0| 20 65 71 75 61 74 69 6f | 6e 2e 0d 0a 00 00 17 4f | equatio|n......O|
|000007c0| 03 0d 0b 00 4e 6f 2e 20 | 20 43 68 65 63 6b 20 79 |....No. | Check y|
|000007d0| 6f 75 72 20 77 6f 72 6b | 2e 20 20 54 68 65 20 63 |our work|. The c|
|000007e0| 6f 72 72 65 63 74 20 69 | 6e 74 65 72 63 65 70 74 |orrect i|ntercept|
|000007f0| 73 20 61 72 65 20 28 2d | 33 2c 20 30 29 20 61 6e |s are (-|3, 0) an|
|00000800| 64 20 28 30 2c 20 33 2f | 32 29 2e 0d 0a 00 00 17 |d (0, 3/|2)......|
|00000810| 4f 0a 0d 0b 00 57 72 6f | 6e 67 2e 20 20 54 6f 20 |O....Wro|ng. To |
|00000820| 73 65 65 20 77 68 79 20 | 6e 6f 74 2c 20 77 65 20 |see why |not, we |
|00000830| 72 65 70 6c 61 63 65 20 | 11 33 78 20 11 31 77 69 |replace |.3x .1wi|
|00000840| 74 68 20 2d 11 33 78 20 | 11 31 61 73 20 66 6f 6c |th -.3x |.1as fol|
|00000850| 6c 6f 77 73 2e 12 30 0d | 0a 00 20 20 20 20 20 20 |lows..0.|.. |
|00000860| 20 20 20 20 11 32 32 0d | 0b 00 20 20 20 20 11 31 | .22.|.. .1|
|00000870| 2d 11 33 78 20 11 31 2b | 20 11 33 79 20 20 11 31 |-.3x .1+| .3y .1|
|00000880| 3d 20 30 20 20 20 20 20 | 20 20 20 20 20 20 11 32 |= 0 | .2|
|00000890| 12 31 47 69 76 65 6e 20 | 65 71 75 61 74 69 6f 6e |.1Given |equation|
|000008a0| 12 30 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 32 |.0... | 2|
|000008b0| 0d 0b 00 20 11 31 2d 28 | 2d 11 33 78 11 31 29 20 |... .1-(|-.3x.1) |
|000008c0| 2b 20 11 33 79 20 20 11 | 31 3d 20 30 20 20 20 20 |+ .3y .|1= 0 |
|000008d0| 20 20 20 20 20 20 20 11 | 32 12 31 52 65 70 6c 61 | .|2.1Repla|
|000008e0| 63 65 20 78 20 77 69 74 | 68 20 2d 78 12 30 0d 0a |ce x wit|h -x.0..|
|000008f0| 00 20 20 20 20 20 20 20 | 20 20 20 32 0d 0b 00 20 |. | 2... |
|00000900| 20 20 20 20 11 33 78 20 | 11 31 2b 20 11 33 79 20 | .3x |.1+ .3y |
|00000910| 20 11 31 3d 20 30 20 20 | 20 20 20 20 20 20 20 20 | .1= 0 | |
|00000920| 20 11 32 12 31 52 65 70 | 6c 61 63 65 6d 65 6e 74 | .2.1Rep|lacement|
|00000930| 20 64 6f 65 73 20 6e 6f | 74 20 79 69 65 6c 64 20 | does no|t yield |
|00000940| 61 6e 20 65 71 75 69 76 | 61 6c 65 6e 74 20 65 71 |an equiv|alent eq|
|00000950| 75 61 74 69 6f 6e 12 30 | 0d 0a 00 0d 0b 00 11 31 |uation.0|.......1|
|00000960| 12 30 53 69 6e 63 65 20 | 74 68 65 20 72 65 70 6c |.0Since |the repl|
|00000970| 61 63 65 6d 65 6e 74 20 | 64 6f 65 73 20 6e 6f 74 |acement |does not|
|00000980| 20 79 69 65 6c 64 20 61 | 6e 20 65 71 75 69 76 61 | yield a|n equiva|
|00000990| 6c 65 6e 74 20 65 71 75 | 61 74 69 6f 6e 2c 20 77 |lent equ|ation, w|
|000009a0| 65 20 63 6f 6e 63 6c 75 | 64 65 0d 0a 00 74 68 61 |e conclu|de...tha|
|000009b0| 74 20 74 68 65 20 67 69 | 76 65 6e 20 65 71 75 61 |t the gi|ven equa|
|000009c0| 74 69 6f 6e 20 69 73 20 | 6e 6f 74 20 73 79 6d 6d |tion is |not symm|
|000009d0| 65 74 72 69 63 20 77 69 | 74 68 20 72 65 73 70 65 |etric wi|th respe|
|000009e0| 63 74 20 74 6f 20 74 68 | 65 20 11 33 79 11 31 2d |ct to th|e .3y.1-|
|000009f0| 61 78 69 73 2e 0d 0a 00 | 00 17 4f 04 0d 0b 00 47 |axis....|..O....G|
|00000a00| 6f 6f 64 20 6a 6f 62 2e | 20 20 53 69 6e 63 65 20 |ood job.| Since |
|00000a10| 77 65 20 6f 62 74 61 69 | 6e 20 61 6e 20 65 71 75 |we obtai|n an equ|
|00000a20| 69 76 61 6c 65 6e 74 20 | 65 71 75 61 74 69 6f 6e |ivalent |equation|
|00000a30| 20 61 66 74 65 72 20 72 | 65 70 6c 61 63 69 6e 67 | after r|eplacing|
|00000a40| 20 11 33 79 20 11 31 62 | 79 20 2d 11 33 79 11 31 | .3y .1b|y -.3y.1|
|00000a50| 2c 0d 0a 00 77 65 20 63 | 6f 6e 63 6c 75 64 65 20 |,...we c|onclude |
|00000a60| 74 68 61 74 20 74 68 65 | 20 67 69 76 65 6e 20 65 |that the| given e|
|00000a70| 71 75 61 74 69 6f 6e 20 | 69 73 20 73 79 6d 6d 65 |quation |is symme|
|00000a80| 74 72 69 63 20 77 69 74 | 68 20 72 65 73 70 65 63 |tric wit|h respec|
|00000a90| 74 20 74 6f 20 74 68 65 | 20 11 33 78 11 31 2d 61 |t to the| .3x.1-a|
|00000aa0| 78 69 73 2e 0d 0a 00 00 | 17 4f 09 0d 0b 00 57 72 |xis.....|.O....Wr|
|00000ab0| 6f 6e 67 2e 20 20 54 6f | 20 73 65 65 20 77 68 79 |ong. To| see why|
|00000ac0| 20 6e 6f 74 2c 20 72 65 | 70 6c 61 63 65 20 11 33 | not, re|place .3|
|00000ad0| 78 20 11 31 62 79 20 2d | 11 33 78 20 11 31 61 6e |x .1by -|.3x .1an|
|00000ae0| 64 20 11 33 79 20 11 31 | 62 79 20 2d 11 33 79 11 |d .3y .1|by -.3y.|
|00000af0| 31 2e 11 32 12 30 0d 0a | 00 20 20 20 20 20 20 20 |1..2.0..|. |
|00000b00| 20 20 20 20 20 32 0d 0b | 00 20 20 20 20 20 20 11 | 2..|. .|
|00000b10| 31 2d 11 33 78 20 11 31 | 2b 20 11 33 79 20 20 11 |1-.3x .1|+ .3y .|
|00000b20| 31 3d 20 30 20 20 20 20 | 20 20 20 20 20 11 32 12 |1= 0 | .2.|
|00000b30| 31 47 69 76 65 6e 20 65 | 71 75 61 74 69 6f 6e 12 |1Given e|quation.|
|00000b40| 30 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |0... | |
|00000b50| 32 0d 0b 00 11 31 2d 28 | 2d 11 33 78 11 31 29 20 |2....1-(|-.3x.1) |
|00000b60| 2b 20 28 2d 11 33 79 11 | 31 29 20 20 3d 20 30 20 |+ (-.3y.|1) = 0 |
|00000b70| 20 20 20 20 20 20 20 20 | 11 32 12 31 52 65 70 6c | |.2.1Repl|
|00000b80| 61 63 65 20 78 20 62 79 | 20 2d 78 20 61 6e 64 20 |ace x by| -x and |
|00000b90| 79 20 62 79 20 2d 79 12 | 30 0d 0a 00 20 20 20 20 |y by -y.|0... |
|00000ba0| 20 20 20 20 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | |2... |
|00000bb0| 20 20 20 11 33 78 20 11 | 31 2b 20 11 33 79 20 20 | .3x .|1+ .3y |
|00000bc0| 11 31 3d 20 30 20 20 20 | 20 20 20 20 20 20 11 32 |.1= 0 | .2|
|00000bd0| 12 31 52 65 70 6c 61 63 | 65 6d 65 6e 74 20 64 6f |.1Replac|ement do|
|00000be0| 65 73 20 6e 6f 74 20 79 | 69 65 6c 64 20 61 6e 20 |es not y|ield an |
|00000bf0| 65 71 75 69 76 61 6c 65 | 6e 74 20 65 71 75 61 74 |equivale|nt equat|
|00000c00| 69 6f 6e 12 30 0d 0a 00 | 0d 0b 00 11 31 12 30 53 |ion.0...|....1.0S|
|00000c10| 69 6e 63 65 20 74 68 65 | 20 72 65 70 6c 61 63 65 |ince the| replace|
|00000c20| 6d 65 6e 74 20 64 6f 65 | 73 20 6e 6f 74 20 79 69 |ment doe|s not yi|
|00000c30| 65 6c 64 20 61 6e 20 65 | 71 75 69 76 61 6c 65 6e |eld an e|quivalen|
|00000c40| 74 20 65 71 75 61 74 69 | 6f 6e 2c 20 77 65 20 63 |t equati|on, we c|
|00000c50| 6f 6e 63 6c 75 64 65 0d | 0a 00 74 68 61 74 20 74 |onclude.|..that t|
|00000c60| 68 65 20 67 69 76 65 6e | 20 65 71 75 61 74 69 6f |he given| equatio|
|00000c70| 6e 20 69 73 20 6e 6f 74 | 20 73 79 6d 6d 65 74 72 |n is not| symmetr|
|00000c80| 69 63 20 77 69 74 68 20 | 72 65 73 70 65 63 74 20 |ic with |respect |
|00000c90| 74 6f 20 74 68 65 20 6f | 72 69 67 69 6e 2e 0d 0a |to the o|rigin...|
|00000ca0| 00 00 17 4f 09 0d 0b 00 | 57 72 6f 6e 67 2e 20 20 |...O....|Wrong. |
|00000cb0| 54 68 65 20 67 72 61 70 | 68 20 6f 66 20 74 68 65 |The grap|h of the|
|00000cc0| 20 67 69 76 65 6e 20 65 | 71 75 61 74 69 6f 6e 20 | given e|quation |
|00000cd0| 69 73 20 73 79 6d 6d 65 | 74 72 69 63 20 74 6f 20 |is symme|tric to |
|00000ce0| 74 68 65 20 11 33 78 11 | 31 2d 61 78 69 73 2e 12 |the .3x.|1-axis..|
|00000cf0| 30 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 11 32 |0... | .2|
|00000d00| 32 0d 0b 00 20 20 20 20 | 11 31 2d 11 33 78 20 11 |2... |.1-.3x .|
|00000d10| 31 2b 20 11 33 79 20 20 | 11 31 3d 20 30 20 20 20 |1+ .3y |.1= 0 |
|00000d20| 20 20 20 20 20 20 20 20 | 20 11 32 12 31 47 69 76 | | .2.1Giv|
|00000d30| 65 6e 20 65 71 75 61 74 | 69 6f 6e 12 30 0d 0a 00 |en equat|ion.0...|
|00000d40| 20 20 20 20 20 20 20 20 | 20 20 32 0d 0b 00 20 11 | | 2... .|
|00000d50| 31 2d 11 33 78 20 11 31 | 2b 20 28 2d 11 33 79 11 |1-.3x .1|+ (-.3y.|
|00000d60| 31 29 20 20 3d 20 30 20 | 20 20 20 20 20 20 20 20 |1) = 0 | |
|00000d70| 20 20 20 11 32 12 31 52 | 65 70 6c 61 63 65 20 79 | .2.1R|eplace y|
|00000d80| 20 62 79 20 2d 79 12 30 | 0d 0a 00 20 20 20 20 20 | by -y.0|... |
|00000d90| 20 20 20 20 20 32 0d 0b | 00 20 20 20 20 11 31 2d | 2..|. .1-|
|00000da0| 11 33 78 20 11 31 2b 20 | 11 33 79 20 20 11 31 3d |.3x .1+ |.3y .1=|
|00000db0| 20 30 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | 0 | .2|
|00000dc0| 12 31 52 65 70 6c 61 63 | 65 6d 65 6e 74 20 79 69 |.1Replac|ement yi|
|00000dd0| 65 6c 64 73 20 65 71 75 | 69 76 61 6c 65 6e 74 20 |elds equ|ivalent |
|00000de0| 65 71 75 61 74 69 6f 6e | 12 30 0d 0a 00 0d 0b 00 |equation|.0......|
|00000df0| 11 31 12 30 53 69 6e 63 | 65 20 74 68 69 73 20 73 |.1.0Sinc|e this s|
|00000e00| 75 62 73 74 69 74 75 74 | 69 6f 6e 20 64 6f 65 73 |ubstitut|ion does|
|00000e10| 20 6e 6f 74 20 63 68 61 | 6e 67 65 20 74 68 65 20 | not cha|nge the |
|00000e20| 65 71 75 61 74 69 6f 6e | 2c 20 69 74 20 66 6f 6c |equation|, it fol|
|00000e30| 6c 6f 77 73 20 74 68 61 | 74 20 0d 0a 00 74 68 65 |lows tha|t ...the|
|00000e40| 20 67 72 61 70 68 20 6f | 66 20 74 68 65 20 65 71 | graph o|f the eq|
|00000e50| 75 61 74 69 6f 6e 20 69 | 73 20 73 79 6d 6d 65 74 |uation i|s symmet|
|00000e60| 72 69 63 20 77 69 74 68 | 20 72 65 73 70 65 63 74 |ric with| respect|
|00000e70| 20 74 6f 20 74 68 65 20 | 11 33 78 11 31 2d 61 78 | to the |.3x.1-ax|
|00000e80| 69 73 2e 0d 0a 00 00 17 | 4f 0a 0d 0b 00 57 72 6f |is......|O....Wro|
|00000e90| 6e 67 2e 20 20 54 6f 20 | 73 65 65 20 77 68 79 20 |ng. To |see why |
|00000ea0| 6e 6f 74 2c 20 77 65 20 | 72 65 70 6c 61 63 65 20 |not, we |replace |
|00000eb0| 11 33 78 20 11 31 77 69 | 74 68 20 2d 11 33 78 20 |.3x .1wi|th -.3x |
|00000ec0| 11 31 61 73 20 66 6f 6c | 6c 6f 77 73 2e 12 30 0d |.1as fol|lows..0.|
|00000ed0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 11 32 32 |.. | .22|
|00000ee0| 0d 0b 00 20 20 20 20 20 | 20 20 11 31 28 2d 11 33 |... | .1(-.3|
|00000ef0| 78 11 31 29 20 20 2d 20 | 33 0d 0b 00 20 20 20 11 |x.1) - |3... .|
|00000f00| 33 79 20 11 31 3d 20 11 | 34 32 32 32 32 32 32 32 |3y .1= .|42222222|
|00000f10| 32 32 20 20 20 20 20 20 | 20 20 20 20 11 32 12 31 |22 | .2.1|
|00000f20| 52 65 70 6c 61 63 65 20 | 78 20 77 69 74 68 20 2d |Replace |x with -|
|00000f30| 78 20 69 6e 20 67 69 76 | 65 6e 20 65 71 75 61 74 |x in giv|en equat|
|00000f40| 69 6f 6e 12 30 0d 0b 00 | 20 20 20 20 20 20 20 20 |ion.0...| |
|00000f50| 20 11 31 32 28 2d 11 33 | 78 11 31 29 0d 0a 00 20 | .12(-.3|x.1)... |
|00000f60| 20 20 20 20 20 20 20 20 | 11 32 32 0d 0b 00 20 20 | |.22... |
|00000f70| 20 20 20 20 20 20 11 33 | 78 20 20 11 31 2d 20 33 | .3|x .1- 3|
|00000f80| 0d 0b 00 20 20 20 11 33 | 79 20 11 31 3d 20 2d 11 |... .3|y .1= -.|
|00000f90| 34 32 32 32 32 32 32 20 | 20 20 20 20 20 20 20 20 |4222222 | |
|00000fa0| 20 20 20 11 32 12 31 52 | 65 70 6c 61 63 65 6d 65 | .2.1R|eplaceme|
|00000fb0| 6e 74 20 64 6f 65 73 20 | 6e 6f 74 20 79 69 65 6c |nt does |not yiel|
|00000fc0| 64 20 61 6e 20 65 71 75 | 69 76 61 6c 65 6e 74 20 |d an equ|ivalent |
|00000fd0| 65 71 75 61 74 69 6f 6e | 12 30 0d 0b 00 20 20 20 |equation|.0... |
|00000fe0| 20 20 20 20 20 20 20 11 | 31 32 11 33 78 0d 0a 00 | .|12.3x...|
|00000ff0| 0d 0b 00 11 31 12 30 53 | 69 6e 63 65 20 74 68 65 |....1.0S|ince the|
|00001000| 20 72 65 70 6c 61 63 65 | 6d 65 6e 74 20 64 6f 65 | replace|ment doe|
|00001010| 73 20 6e 6f 74 20 79 69 | 65 6c 64 20 61 6e 20 65 |s not yi|eld an e|
|00001020| 71 75 69 76 61 6c 65 6e | 74 20 65 71 75 61 74 69 |quivalen|t equati|
|00001030| 6f 6e 2c 20 77 65 20 63 | 6f 6e 63 6c 75 64 65 0d |on, we c|onclude.|
|00001040| 0a 00 74 68 61 74 20 74 | 68 65 20 67 69 76 65 6e |..that t|he given|
|00001050| 20 65 71 75 61 74 69 6f | 6e 20 69 73 20 6e 6f 74 | equatio|n is not|
|00001060| 20 73 79 6d 6d 65 74 72 | 69 63 20 77 69 74 68 20 | symmetr|ic with |
|00001070| 72 65 73 70 65 63 74 20 | 74 6f 20 74 68 65 20 11 |respect |to the .|
|00001080| 33 79 11 31 2d 61 78 69 | 73 2e 0d 0a 00 00 17 4f |3y.1-axi|s......O|
|00001090| 0a 0d 0b 00 57 72 6f 6e | 67 2e 20 20 54 6f 20 73 |....Wron|g. To s|
|000010a0| 65 65 20 77 68 79 20 6e | 6f 74 2c 20 77 65 20 72 |ee why n|ot, we r|
|000010b0| 65 70 6c 61 63 65 20 11 | 33 79 20 11 31 77 69 74 |eplace .|3y .1wit|
|000010c0| 68 20 2d 11 33 79 20 11 | 31 61 73 20 66 6f 6c 6c |h -.3y .|1as foll|
|000010d0| 6f 77 73 2e 12 30 0d 0a | 00 20 20 20 20 20 20 20 |ows..0..|. |
|000010e0| 20 20 11 32 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | .22...| |
|000010f0| 11 33 78 20 20 11 31 2d | 20 33 0d 0b 00 20 28 2d |.3x .1-| 3... (-|
|00001100| 11 33 79 11 31 29 20 3d | 20 11 34 32 32 32 32 32 |.3y.1) =| .422222|
|00001110| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 12 |2 | .2.|
|00001120| 31 52 65 70 6c 61 63 65 | 20 79 20 77 69 74 68 20 |1Replace| y with |
|00001130| 2d 79 20 69 6e 20 67 69 | 76 65 6e 20 65 71 75 61 |-y in gi|ven equa|
|00001140| 74 69 6f 6e 12 30 0d 0b | 00 20 20 20 20 20 20 20 |tion.0..|. |
|00001150| 20 20 20 11 31 32 11 33 | 78 0d 0a 00 20 20 20 20 | .12.3|x... |
|00001160| 20 20 20 20 11 32 32 0d | 0b 00 20 20 20 20 20 20 | .22.|.. |
|00001170| 20 11 33 78 20 20 11 31 | 2d 20 33 0d 0b 00 20 20 | .3x .1|- 3... |
|00001180| 2d 11 33 79 20 11 31 3d | 20 11 34 32 32 32 32 32 |-.3y .1=| .422222|
|00001190| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 |2 | .2|
|000011a0| 12 31 52 65 70 6c 61 63 | 65 6d 65 6e 74 20 64 6f |.1Replac|ement do|
|000011b0| 65 73 20 6e 6f 74 20 79 | 69 65 6c 64 20 61 6e 20 |es not y|ield an |
|000011c0| 65 71 75 69 76 61 6c 65 | 6e 74 20 65 71 75 61 74 |equivale|nt equat|
|000011d0| 69 6f 6e 12 30 0d 0b 00 | 20 20 20 20 20 20 20 20 |ion.0...| |
|000011e0| 20 11 31 32 11 33 78 0d | 0a 00 0d 0b 00 11 31 12 | .12.3x.|......1.|
|000011f0| 30 53 69 6e 63 65 20 74 | 68 65 20 72 65 70 6c 61 |0Since t|he repla|
|00001200| 63 65 6d 65 6e 74 20 64 | 6f 65 73 20 6e 6f 74 20 |cement d|oes not |
|00001210| 79 69 65 6c 64 20 61 6e | 20 65 71 75 69 76 61 6c |yield an| equival|
|00001220| 65 6e 74 20 65 71 75 61 | 74 69 6f 6e 2c 20 77 65 |ent equa|tion, we|
|00001230| 20 63 6f 6e 63 6c 75 64 | 65 0d 0a 00 74 68 61 74 | conclud|e...that|
|00001240| 20 74 68 65 20 67 69 76 | 65 6e 20 65 71 75 61 74 | the giv|en equat|
|00001250| 69 6f 6e 20 69 73 20 6e | 6f 74 20 73 79 6d 6d 65 |ion is n|ot symme|
|00001260| 74 72 69 63 20 77 69 74 | 68 20 72 65 73 70 65 63 |tric wit|h respec|
|00001270| 74 20 74 6f 20 74 68 65 | 20 11 33 78 11 31 2d 61 |t to the| .3x.1-a|
|00001280| 78 69 73 2e 0d 0a 00 00 | 17 4f 05 0d 0b 00 47 6f |xis.....|.O....Go|
|00001290| 6f 64 20 6a 6f 62 2e 20 | 20 53 69 6e 63 65 20 77 |od job. | Since w|
|000012a0| 65 20 6f 62 74 61 69 6e | 20 61 6e 20 65 71 75 69 |e obtain| an equi|
|000012b0| 76 61 6c 65 6e 74 20 65 | 71 75 61 74 69 6f 6e 20 |valent e|quation |
|000012c0| 61 66 74 65 72 20 72 65 | 70 6c 61 63 69 6e 67 20 |after re|placing |
|000012d0| 11 33 79 20 11 31 62 79 | 20 2d 11 33 79 20 0d 0a |.3y .1by| -.3y ..|
|000012e0| 00 11 31 61 6e 64 20 11 | 33 78 20 11 31 62 79 20 |..1and .|3x .1by |
|000012f0| 11 33 2d 78 11 31 2c 20 | 77 65 20 63 6f 6e 63 6c |.3-x.1, |we concl|
|00001300| 75 64 65 20 74 68 61 74 | 20 74 68 65 20 67 69 76 |ude that| the giv|
|00001310| 65 6e 20 65 71 75 61 74 | 69 6f 6e 20 69 73 20 73 |en equat|ion is s|
|00001320| 79 6d 6d 65 74 72 69 63 | 20 77 69 74 68 20 72 65 |ymmetric| with re|
|00001330| 73 70 65 63 74 20 0d 0a | 00 74 6f 20 74 68 65 20 |spect ..|.to the |
|00001340| 6f 72 69 67 69 6e 2e 0d | 0a 00 00 17 4f 0a 0d 0b |origin..|....O...|
|00001350| 00 57 72 6f 6e 67 2e 20 | 20 54 68 65 20 67 72 61 |.Wrong. | The gra|
|00001360| 70 68 20 6f 66 20 74 68 | 65 20 67 69 76 65 6e 20 |ph of th|e given |
|00001370| 65 71 75 61 74 69 6f 6e | 20 69 73 20 73 79 6d 6d |equation| is symm|
|00001380| 65 74 72 69 63 20 74 6f | 20 74 68 65 20 6f 72 69 |etric to| the ori|
|00001390| 67 69 6e 2e 20 20 12 30 | 0d 0a 00 20 20 20 20 20 |gin. .0|... |
|000013a0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|000013b0| 20 20 20 11 31 28 2d 11 | 33 78 11 31 29 20 20 2d | .1(-.|3x.1) -|
|000013c0| 20 33 0d 0b 00 28 2d 11 | 33 79 11 31 29 20 3d 20 | 3...(-.|3y.1) = |
|000013d0| 11 34 32 32 32 32 32 32 | 32 32 32 20 20 20 20 20 |.4222222|222 |
|000013e0| 20 20 20 20 20 11 32 12 | 31 52 65 70 6c 61 63 65 | .2.|1Replace|
|000013f0| 20 78 20 77 69 74 68 20 | 2d 78 20 61 6e 64 20 79 | x with |-x and y|
|00001400| 20 77 69 74 68 20 2d 79 | 20 69 6e 20 67 69 76 65 | with -y| in give|
|00001410| 6e 20 65 71 75 61 74 69 | 6f 6e 12 30 0d 0b 00 20 |n equati|on.0... |
|00001420| 20 20 20 20 20 20 20 20 | 11 31 32 28 2d 11 33 78 | |.12(-.3x|
|00001430| 11 31 29 0d 0a 00 20 20 | 20 20 20 20 20 20 20 11 |.1)... | .|
|00001440| 32 32 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |22 | |
|00001450| 20 20 20 20 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | 2...| |
|00001460| 11 33 78 20 20 11 31 2d | 20 33 20 20 20 20 20 20 |.3x .1-| 3 |
|00001470| 20 20 20 20 20 20 20 11 | 33 78 20 20 11 31 2d 20 | .|3x .1- |
|00001480| 33 0d 0b 00 20 20 2d 11 | 33 79 20 11 31 3d 20 2d |3... -.|3y .1= -|
|00001490| 11 34 32 32 32 32 32 32 | 20 20 20 35 35 36 20 20 |.4222222| 556 |
|000014a0| 20 11 33 79 20 11 31 3d | 20 11 34 32 32 32 32 32 | .3y .1=| .422222|
|000014b0| 32 20 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 11 |2 ... | .|
|000014c0| 31 32 11 33 78 20 20 20 | 20 20 20 20 20 20 20 20 |12.3x | |
|000014d0| 20 20 20 20 20 20 11 31 | 32 11 33 78 0d 0a 00 0d | .1|2.3x....|
|000014e0| 0b 00 11 31 12 30 53 69 | 6e 63 65 20 74 68 69 73 |...1.0Si|nce this|
|000014f0| 20 73 75 62 73 74 69 74 | 75 74 69 6f 6e 20 64 6f | substit|ution do|
|00001500| 65 73 20 6e 6f 74 20 63 | 68 61 6e 67 65 20 74 68 |es not c|hange th|
|00001510| 65 20 65 71 75 61 74 69 | 6f 6e 2c 20 69 74 20 66 |e equati|on, it f|
|00001520| 6f 6c 6c 6f 77 73 20 74 | 68 61 74 20 74 68 65 0d |ollows t|hat the.|
|00001530| 0a 00 67 72 61 70 68 20 | 6f 66 20 74 68 65 20 65 |..graph |of the e|
|00001540| 71 75 61 74 69 6f 6e 20 | 69 73 20 73 79 6d 6d 65 |quation |is symme|
|00001550| 74 72 69 63 20 77 69 74 | 68 20 72 65 73 70 65 63 |tric wit|h respec|
|00001560| 74 20 74 6f 20 74 68 65 | 20 11 33 78 11 31 2d 61 |t to the| .3x.1-a|
|00001570| 78 69 73 2e 0d 0a 00 00 | 17 4f 05 0d 0b 00 57 72 |xis.....|.O....Wr|
|00001580| 6f 6e 67 2e 20 20 54 68 | 65 20 11 33 78 11 31 2d |ong. Th|e .3x.1-|
|00001590| 69 6e 74 65 72 63 65 70 | 74 20 69 73 20 69 6e 63 |intercep|t is inc|
|000015a0| 6f 72 72 65 63 74 2e 20 | 20 4c 65 74 74 69 6e 67 |orrect. | Letting|
|000015b0| 20 11 33 79 20 11 31 3d | 20 30 2c 20 77 65 20 68 | .3y .1=| 0, we h|
|000015c0| 61 76 65 20 30 20 3d 20 | 2d 33 11 33 78 20 11 31 |ave 0 = |-3.3x .1|
|000015d0| 2b 20 32 2e 0d 0a 00 53 | 6f 6c 76 69 6e 67 20 66 |+ 2....S|olving f|
|000015e0| 6f 72 20 11 33 78 11 31 | 2c 20 77 65 20 6f 62 74 |or .3x.1|, we obt|
|000015f0| 61 69 6e 20 11 33 78 20 | 11 31 3d 20 32 2f 33 2e |ain .3x |.1= 2/3.|
|00001600| 20 20 54 68 75 73 2c 20 | 74 68 65 20 11 33 78 11 | Thus, |the .3x.|
|00001610| 31 2d 69 6e 74 65 72 63 | 65 70 74 20 69 73 20 28 |1-interc|ept is (|
|00001620| 32 2f 33 2c 20 30 29 2e | 20 20 54 72 79 0d 0a 00 |2/3, 0).| Try...|
|00001630| 73 6b 65 74 63 68 69 6e | 67 20 74 68 65 20 67 72 |sketchin|g the gr|
|00001640| 61 70 68 20 61 67 61 69 | 6e 2e 0d 0a 00 00 17 4f |aph agai|n......O|
|00001650| 06 0d 0b 00 57 72 6f 6e | 67 2e 20 20 54 68 65 20 |....Wron|g. The |
|00001660| 69 6e 74 65 72 63 65 70 | 74 73 20 61 72 65 20 69 |intercep|ts are i|
|00001670| 6e 63 6f 72 72 65 63 74 | 2e 20 20 4c 65 74 74 69 |ncorrect|. Letti|
|00001680| 6e 67 20 11 33 79 20 11 | 31 3d 20 30 2c 20 77 65 |ng .3y .|1= 0, we|
|00001690| 20 68 61 76 65 20 30 20 | 3d 20 2d 33 11 33 78 20 | have 0 |= -3.3x |
|000016a0| 11 31 2b 20 32 2e 0d 0a | 00 53 6f 6c 76 69 6e 67 |.1+ 2...|.Solving|
|000016b0| 20 66 6f 72 20 11 33 78 | 11 31 2c 20 77 65 20 6f | for .3x|.1, we o|
|000016c0| 62 74 61 69 6e 20 11 33 | 78 20 11 31 3d 20 32 2f |btain .3|x .1= 2/|
|000016d0| 33 2e 20 20 54 68 75 73 | 2c 20 74 68 65 20 11 33 |3. Thus|, the .3|
|000016e0| 78 11 31 2d 69 6e 74 65 | 72 63 65 70 74 20 69 73 |x.1-inte|rcept is|
|000016f0| 20 28 32 2f 33 2c 20 30 | 29 2e 20 20 0d 0a 00 4c | (2/3, 0|). ...L|
|00001700| 65 74 74 69 6e 67 20 11 | 33 78 20 11 31 3d 20 30 |etting .|3x .1= 0|
|00001710| 2c 20 77 65 20 68 61 76 | 65 20 11 33 79 20 11 31 |, we hav|e .3y .1|
|00001720| 3d 20 32 2e 20 20 54 68 | 75 73 2c 20 74 68 65 20 |= 2. Th|us, the |
|00001730| 11 33 79 11 31 2d 69 6e | 74 65 72 63 65 70 74 20 |.3y.1-in|tercept |
|00001740| 69 73 20 28 30 2c 20 32 | 29 2e 20 20 54 72 79 20 |is (0, 2|). Try |
|00001750| 0d 0a 00 73 6b 65 74 63 | 68 69 6e 67 20 74 68 65 |...sketc|hing the|
|00001760| 20 67 72 61 70 68 20 61 | 67 61 69 6e 2e 0d 0a 00 | graph a|gain....|
|00001770| 00 17 4f 04 0d 0b 00 52 | 69 67 68 74 2e 20 20 54 |..O....R|ight. T|
|00001780| 68 65 20 67 72 61 70 68 | 20 6f 66 20 74 68 65 20 |he graph| of the |
|00001790| 67 69 76 65 6e 20 65 71 | 75 61 74 69 6f 6e 20 68 |given eq|uation h|
|000017a0| 61 73 20 6e 6f 20 73 79 | 6d 6d 65 74 72 79 20 61 |as no sy|mmetry a|
|000017b0| 6e 64 20 69 6e 74 65 72 | 63 65 70 74 73 20 61 74 |nd inter|cepts at|
|000017c0| 20 0d 0a 00 28 30 2c 20 | 32 29 20 61 6e 64 20 28 | ...(0, |2) and (|
|000017d0| 32 2f 33 2c 20 30 29 2e | 0d 0a 00 00 17 4f 03 0d |2/3, 0).|.....O..|
|000017e0| 0b 00 57 72 6f 6e 67 2e | 20 20 4f 6e 65 20 6f 66 |..Wrong.| One of|
|000017f0| 20 74 68 65 20 61 62 6f | 76 65 20 69 73 20 63 6f | the abo|ve is co|
|00001800| 72 72 65 63 74 2e 20 20 | 54 72 79 20 61 67 61 69 |rrect. |Try agai|
|00001810| 6e 2e 0d 0a 00 00 17 4f | 04 0d 0b 00 57 72 6f 6e |n......O|....Wron|
|00001820| 67 2e 20 20 54 68 65 20 | 11 33 78 11 31 2d 69 6e |g. The |.3x.1-in|
|00001830| 74 65 72 63 65 70 74 73 | 20 61 72 65 20 61 74 20 |tercepts| are at |
|00001840| 28 33 2c 20 30 29 20 61 | 6e 64 20 28 31 2c 20 30 |(3, 0) a|nd (1, 0|
|00001850| 29 2e 20 20 43 68 65 63 | 6b 20 79 6f 75 72 20 63 |). Chec|k your c|
|00001860| 61 6c 63 75 6c 61 74 69 | 6f 6e 73 0d 0a 00 61 6e |alculati|ons...an|
|00001870| 64 20 74 72 79 20 73 6b | 65 74 63 68 69 6e 67 20 |d try sk|etching |
|00001880| 74 68 65 20 67 72 61 70 | 68 20 61 67 61 69 6e 2e |the grap|h again.|
|00001890| 0d 0a 00 00 17 4f 03 0d | 0b 00 52 69 67 68 74 2e |.....O..|..Right.|
|000018a0| 20 20 59 6f 75 20 73 6b | 65 74 63 68 65 64 20 74 | You sk|etched t|
|000018b0| 68 65 20 67 72 61 70 68 | 20 63 6f 72 72 65 63 74 |he graph| correct|
|000018c0| 6c 79 20 61 6e 64 20 66 | 6f 75 6e 64 20 61 6c 6c |ly and f|ound all|
|000018d0| 20 6f 66 20 74 68 65 20 | 69 6e 74 65 72 63 65 70 | of the |intercep|
|000018e0| 74 73 2e 0d 0a 00 00 17 | 4f 09 0d 0b 00 57 72 6f |ts......|O....Wro|
|000018f0| 6e 67 2e 20 20 54 68 65 | 73 65 20 69 6e 74 65 72 |ng. The|se inter|
|00001900| 63 65 70 74 73 20 61 72 | 65 20 63 6f 72 72 65 63 |cepts ar|e correc|
|00001910| 74 2c 20 62 75 74 20 74 | 68 65 72 65 20 69 73 20 |t, but t|here is |
|00001920| 61 6c 73 6f 20 61 6e 6f | 74 68 65 72 20 0d 0a 00 |also ano|ther ...|
|00001930| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001940| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001950| 20 20 20 20 20 20 20 20 | 20 20 11 32 32 0d 0b 00 | | .22...|
|00001960| 11 33 78 11 31 2d 69 6e | 74 65 72 63 65 70 74 2e |.3x.1-in|tercept.|
|00001970| 20 20 4c 65 74 74 69 6e | 67 20 11 33 79 20 11 31 | Lettin|g .3y .1|
|00001980| 3d 20 30 2c 20 77 65 20 | 68 61 76 65 20 30 20 3d |= 0, we |have 0 =|
|00001990| 20 11 33 78 20 20 11 31 | 2d 20 34 11 33 78 20 11 | .3x .1|- 4.3x .|
|000019a0| 31 2b 20 33 2e 20 20 46 | 61 63 74 6f 72 69 6e 67 |1+ 3. F|actoring|
|000019b0| 20 79 69 65 6c 64 73 0d | 0a 00 0d 0b 00 30 20 3d | yields.|.....0 =|
|000019c0| 20 28 11 33 78 20 11 31 | 2d 20 33 29 28 11 33 78 | (.3x .1|- 3)(.3x|
|000019d0| 20 11 31 2d 20 31 29 2e | 20 20 53 65 74 74 69 6e | .1- 1).| Settin|
|000019e0| 67 20 65 61 63 68 20 66 | 61 63 74 6f 72 20 65 71 |g each f|actor eq|
|000019f0| 75 61 6c 20 74 6f 20 30 | 20 61 6e 64 20 73 6f 6c |ual to 0| and sol|
|00001a00| 76 69 6e 67 20 66 6f 72 | 20 11 33 78 11 31 2c 20 |ving for| .3x.1, |
|00001a10| 77 65 0d 0a 00 0d 0b 00 | 6f 62 74 61 69 6e 20 74 |we......|obtain t|
|00001a20| 68 65 20 73 6f 6c 75 74 | 69 6f 6e 73 20 11 33 78 |he solut|ions .3x|
|00001a30| 20 11 31 3d 20 33 20 61 | 6e 64 20 11 33 78 20 11 | .1= 3 a|nd .3x .|
|00001a40| 31 3d 20 31 2e 20 20 54 | 68 75 73 2c 20 74 68 65 |1= 1. T|hus, the|
|00001a50| 20 11 33 78 11 31 2d 69 | 6e 74 65 72 63 65 70 74 | .3x.1-i|ntercept|
|00001a60| 73 20 61 72 65 20 61 74 | 20 28 33 2c 20 30 29 0d |s are at| (3, 0).|
|00001a70| 0a 00 0d 0b 00 61 6e 64 | 20 28 31 2c 20 30 29 2e |.....and| (1, 0).|
|00001a80| 20 20 54 72 79 20 73 6b | 65 74 63 68 69 6e 67 20 | Try sk|etching |
|00001a90| 74 68 65 20 67 72 61 70 | 68 20 61 67 61 69 6e 2e |the grap|h again.|
|00001aa0| 0d 0a 00 00 17 4f 03 0d | 0b 00 57 72 6f 6e 67 2e |.....O..|..Wrong.|
|00001ab0| 20 20 4f 6e 65 20 6f 66 | 20 74 68 65 20 61 62 6f | One of| the abo|
|00001ac0| 76 65 20 69 73 20 63 6f | 72 72 65 63 74 2e 20 20 |ve is co|rrect. |
|00001ad0| 54 72 79 20 61 67 61 69 | 6e 2e 0d 0a 00 00 17 4f |Try agai|n......O|
|00001ae0| 08 0d 0b 00 57 72 6f 6e | 67 2e 20 20 54 68 65 20 |....Wron|g. The |
|00001af0| 67 72 61 70 68 20 6f 66 | 20 74 68 65 20 67 69 76 |graph of| the giv|
|00001b00| 65 6e 20 65 71 75 61 74 | 69 6f 6e 20 64 6f 65 73 |en equat|ion does|
|00001b10| 20 6e 6f 74 20 70 61 73 | 73 20 74 68 72 6f 75 67 | not pas|s throug|
|00001b20| 68 20 28 30 2c 20 30 29 | 2e 20 20 4c 65 74 0d 0a |h (0, 0)|. Let..|
|00001b30| 00 11 33 78 20 11 31 3d | 20 30 20 74 6f 20 6f 62 |..3x .1=| 0 to ob|
|00001b40| 74 61 69 6e 20 11 33 79 | 20 11 31 3d 20 32 2e 20 |tain .3y| .1= 2. |
|00001b50| 20 54 68 75 73 2c 20 74 | 68 65 20 11 33 79 11 31 | Thus, t|he .3y.1|
|00001b60| 2d 69 6e 74 65 72 63 65 | 70 74 20 69 73 20 28 30 |-interce|pt is (0|
|00001b70| 2c 20 32 29 2e 20 20 4c | 65 74 74 69 6e 67 20 11 |, 2). L|etting .|
|00001b80| 33 79 20 11 31 3d 20 30 | 2c 20 77 65 0d 0a 00 20 |3y .1= 0|, we... |
|00001b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ba0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001bb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001bc0| 20 20 20 20 20 20 20 20 | 20 20 11 34 67 0d 0b 00 | | .4g...|
|00001bd0| 20 20 20 20 20 20 20 20 | 20 20 11 32 33 20 20 20 | | .23 |
|00001be0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001c00| 20 20 20 20 20 20 20 20 | 20 20 20 33 11 34 66 0d | | 3.4f.|
|00001c10| 0b 00 11 31 68 61 76 65 | 20 30 20 3d 20 11 33 78 |...1have| 0 = .3x|
|00001c20| 20 20 11 31 2b 20 32 2e | 20 20 54 68 69 73 20 65 | .1+ 2.| This e|
|00001c30| 71 75 61 74 69 6f 6e 20 | 79 69 65 6c 64 73 20 74 |quation |yields t|
|00001c40| 68 65 20 73 6f 6c 75 74 | 69 6f 6e 20 11 33 78 20 |he solut|ion .3x |
|00001c50| 11 31 3d 20 2d 11 34 76 | 20 11 31 32 2e 20 20 54 |.1= -.4v| .12. T|
|00001c60| 68 75 73 2c 20 74 68 65 | 72 65 20 0d 0a 00 20 20 |hus, the|re ... |
|00001c70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001c80| 20 20 20 11 34 28 20 20 | 20 67 20 20 20 29 0d 0b | .4( | g )..|
|00001c90| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001ca0| 20 20 20 20 20 20 21 20 | 11 32 33 11 34 66 20 20 | ! |.23.4f |
|00001cb0| 20 20 21 0d 0b 00 11 31 | 69 73 20 61 6e 20 11 33 | !....1|is an .3|
|00001cc0| 78 11 31 2d 69 6e 74 65 | 72 63 65 70 74 20 61 74 |x.1-inte|rcept at|
|00001cd0| 20 11 34 21 11 31 2d 11 | 34 76 20 11 31 32 2c 20 | .4!.1-.|4v .12, |
|00001ce0| 30 11 34 21 11 31 2e 20 | 20 54 72 79 20 73 6b 65 |0.4!.1. | Try ske|
|00001cf0| 74 63 68 69 6e 67 20 74 | 68 65 20 67 72 61 70 68 |tching t|he graph|
|00001d00| 20 61 67 61 69 6e 2e 0d | 0b 00 20 20 20 20 20 20 | again..|.. |
|00001d10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001d20| 34 39 20 20 20 20 20 20 | 20 30 0d 0a 00 00 17 4f |49 | 0.....O|
|00001d30| 08 0d 0b 00 57 72 6f 6e | 67 2e 20 20 54 68 65 20 |....Wron|g. The |
|00001d40| 67 72 61 70 68 20 6f 66 | 20 74 68 65 20 67 69 76 |graph of| the giv|
|00001d50| 65 6e 20 65 71 75 61 74 | 69 6f 6e 20 64 6f 65 73 |en equat|ion does|
|00001d60| 20 6e 6f 74 20 70 61 73 | 73 20 74 68 72 6f 75 67 | not pas|s throug|
|00001d70| 68 20 28 2d 32 2c 20 30 | 29 2e 20 20 0d 0a 00 20 |h (-2, 0|). ... |
|00001d80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d90| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 33 0d 0b | | .23..|
|00001da0| 00 11 31 4c 65 74 74 69 | 6e 67 20 11 33 79 20 11 |..1Letti|ng .3y .|
|00001db0| 31 3d 20 30 2c 20 77 65 | 20 68 61 76 65 20 30 20 |1= 0, we| have 0 |
|00001dc0| 3d 20 11 33 78 20 20 11 | 31 2b 20 32 2e 20 20 54 |= .3x .|1+ 2. T|
|00001dd0| 68 69 73 20 65 71 75 61 | 74 69 6f 6e 20 79 69 65 |his equa|tion yie|
|00001de0| 6c 64 73 20 74 68 65 20 | 73 6f 6c 75 74 69 6f 6e |lds the |solution|
|00001df0| 20 0d 0a 00 20 20 20 20 | 20 20 20 11 34 67 20 20 | ... | .4g |
|00001e00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e20| 20 20 28 20 20 20 67 20 | 20 20 29 0d 0b 00 20 20 | ( g | )... |
|00001e30| 20 20 20 11 32 33 11 34 | 66 20 20 20 20 20 20 20 | .23.4|f |
|00001e40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 21 20 | | ! |
|00001e60| 11 32 33 11 34 66 20 20 | 20 20 21 0d 0b 00 11 33 |.23.4f | !....3|
|00001e70| 78 20 11 31 3d 20 2d 11 | 34 76 20 11 31 32 2e 20 |x .1= -.|4v .12. |
|00001e80| 20 54 68 75 73 2c 20 74 | 68 65 72 65 20 69 73 20 | Thus, t|here is |
|00001e90| 61 6e 20 11 33 78 11 31 | 2d 69 6e 74 65 72 63 65 |an .3x.1|-interce|
|00001ea0| 70 74 20 61 74 20 11 34 | 21 11 31 2d 11 34 76 20 |pt at .4|!.1-.4v |
|00001eb0| 11 31 32 2c 20 30 11 34 | 21 11 31 2e 20 20 54 72 |.12, 0.4|!.1. Tr|
|00001ec0| 79 20 73 6b 65 74 63 68 | 69 6e 67 20 74 68 65 20 |y sketch|ing the |
|00001ed0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001ee0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ef0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001f00| 34 39 20 20 20 20 20 20 | 20 30 0d 0a 00 11 31 67 |49 | 0....1g|
|00001f10| 72 61 70 68 20 61 67 61 | 69 6e 2e 0d 0a 00 00 17 |raph aga|in......|
|00001f20| 4f 03 0d 0b 00 47 6f 6f | 64 20 6a 6f 62 2e 20 20 |O....Goo|d job. |
|00001f30| 59 6f 75 20 73 6b 65 74 | 63 68 65 64 20 74 68 65 |You sket|ched the|
|00001f40| 20 67 72 61 70 68 20 63 | 6f 72 72 65 63 74 6c 79 | graph c|orrectly|
|00001f50| 2e 20 20 0d 0a 00 00 17 | 4f 03 0d 0b 00 57 72 6f |. .....|O....Wro|
|00001f60| 6e 67 2e 20 20 4f 6e 65 | 20 6f 66 20 74 68 65 20 |ng. One| of the |
|00001f70| 61 62 6f 76 65 20 69 73 | 20 63 6f 72 72 65 63 74 |above is| correct|
|00001f80| 2e 0d 0a 00 00 17 4f 06 | 0d 0b 00 57 72 6f 6e 67 |......O.|...Wrong|
|00001f90| 2e 20 20 54 68 65 20 67 | 72 61 70 68 20 6f 66 20 |. The g|raph of |
|00001fa0| 74 68 65 20 67 69 76 65 | 6e 20 65 71 75 61 74 69 |the give|n equati|
|00001fb0| 6f 6e 20 68 61 73 20 6e | 6f 20 11 33 79 11 31 2d |on has n|o .3y.1-|
|00001fc0| 69 6e 74 65 72 63 65 70 | 74 2e 20 20 57 68 65 6e |intercep|t. When|
|00001fd0| 20 11 33 78 20 11 31 3d | 20 30 2c 20 77 65 0d 0a | .3x .1=| 0, we..|
|00001fe0| 00 20 20 20 20 20 20 20 | 20 20 20 11 34 44 32 32 |. | .4D22|
|00001ff0| 0d 0b 00 11 31 68 61 76 | 65 20 11 33 79 20 11 31 |....1hav|e .3y .1|
|00002000| 3d 20 11 34 53 20 11 31 | 2d 33 2c 20 77 68 69 63 |= .4S .1|-3, whic|
|00002010| 68 20 68 61 73 20 6e 6f | 20 72 65 61 6c 20 73 6f |h has no| real so|
|00002020| 6c 75 74 69 6f 6e 2e 20 | 20 54 68 75 73 2c 20 77 |lution. | Thus, w|
|00002030| 65 20 63 6f 6e 63 6c 75 | 64 65 20 74 68 61 74 20 |e conclu|de that |
|00002040| 74 68 65 72 65 20 69 73 | 0d 0a 00 0d 0b 00 6e 6f |there is|......no|
|00002050| 20 11 33 79 11 31 2d 69 | 6e 74 65 72 63 65 70 74 | .3y.1-i|ntercept|
|00002060| 2e 20 20 54 68 65 20 11 | 33 78 11 31 2d 69 6e 74 |. The .|3x.1-int|
|00002070| 65 72 63 65 70 74 20 69 | 73 20 28 33 2c 20 30 29 |ercept i|s (3, 0)|
|00002080| 2e 20 20 54 72 79 20 73 | 6b 65 74 63 68 69 6e 67 |. Try s|ketching|
|00002090| 20 74 68 65 20 67 72 61 | 70 68 20 61 67 61 69 6e | the gra|ph again|
|000020a0| 2e 0d 0a 00 00 17 4f 04 | 20 20 20 20 20 20 20 20 |......O.| |
|000020b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000020c0| 20 11 34 44 32 32 32 32 | 32 20 20 20 20 20 20 20 | .4D2222|2 |
|000020d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000020e0| 20 44 32 32 32 32 32 0d | 0b 00 11 31 4e 6f 2e 20 | D22222.|...1No. |
|000020f0| 20 53 69 6e 63 65 20 74 | 68 65 20 76 61 6c 75 65 | Since t|he value|
|00002100| 20 6f 66 20 11 34 53 20 | 11 33 78 20 11 31 2d 20 | of .4S |.3x .1- |
|00002110| 33 20 11 34 3e 20 11 31 | 30 2c 20 74 68 65 20 67 |3 .4> .1|0, the g|
|00002120| 72 61 70 68 20 6f 66 20 | 11 33 79 20 11 31 3d 20 |raph of |.3y .1= |
|00002130| 11 34 53 20 11 33 78 20 | 11 31 2d 20 33 20 64 6f |.4S .3x |.1- 3 do|
|00002140| 65 73 20 6e 6f 74 20 67 | 6f 0d 0a 00 62 65 6c 6f |es not g|o...belo|
|00002150| 77 20 74 68 65 20 11 33 | 78 11 31 2d 61 78 69 73 |w the .3|x.1-axis|
|00002160| 2e 20 20 54 72 79 20 73 | 6b 65 74 63 68 69 6e 67 |. Try s|ketching|
|00002170| 20 74 68 65 20 67 72 61 | 70 68 20 61 67 61 69 6e | the gra|ph again|
|00002180| 2e 0d 0a 00 00 17 4f 03 | 0d 0b 00 52 69 67 68 74 |......O.|...Right|
|00002190| 2e 20 20 54 68 65 20 67 | 72 61 70 68 20 68 61 73 |. The g|raph has|
|000021a0| 20 6f 6e 6c 79 20 6f 6e | 65 20 69 6e 74 65 72 63 | only on|e interc|
|000021b0| 65 70 74 20 61 6e 64 20 | 68 61 73 20 6e 6f 20 73 |ept and |has no s|
|000021c0| 79 6d 6d 65 74 72 79 2e | 0d 0a 00 00 17 4f 03 0d |ymmetry.|.....O..|
|000021d0| 0b 00 57 72 6f 6e 67 2e | 20 20 4f 6e 65 20 6f 66 |..Wrong.| One of|
|000021e0| 20 74 68 65 20 61 62 6f | 76 65 20 69 73 20 63 6f | the abo|ve is co|
|000021f0| 72 72 65 63 74 2e 20 20 | 54 72 79 20 61 67 61 69 |rrect. |Try agai|
|00002200| 6e 2e 0d 0a 00 00 17 4f | 03 0d 0b 00 52 69 67 68 |n......O|....Righ|
|00002210| 74 2e 20 20 54 68 65 20 | 67 72 61 70 68 20 68 61 |t. The |graph ha|
|00002220| 73 20 74 77 6f 20 69 6e | 74 65 72 63 65 70 74 73 |s two in|tercepts|
|00002230| 20 61 6e 64 20 6e 6f 20 | 73 79 6d 6d 65 74 72 79 | and no |symmetry|
|00002240| 2e 0d 0a 00 00 17 4f 04 | 0d 0b 00 4e 6f 2e 20 20 |......O.|...No. |
|00002250| 54 68 65 20 11 33 78 11 | 31 2d 69 6e 74 65 72 63 |The .3x.|1-interc|
|00002260| 65 70 74 20 69 73 20 61 | 74 20 28 32 2c 20 30 29 |ept is a|t (2, 0)|
|00002270| 2c 20 62 75 74 20 74 68 | 65 20 11 33 79 11 31 2d |, but th|e .3y.1-|
|00002280| 69 6e 74 65 72 63 65 70 | 74 20 69 73 20 61 74 20 |intercep|t is at |
|00002290| 28 30 2c 20 32 29 2e 20 | 20 59 6f 75 0d 0a 00 6d |(0, 2). | You...m|
|000022a0| 61 79 20 77 61 6e 74 20 | 74 6f 20 72 65 76 69 65 |ay want |to revie|
|000022b0| 77 20 49 6e 74 65 67 72 | 61 74 65 64 20 45 78 61 |w Integr|ated Exa|
|000022c0| 6d 70 6c 65 20 33 20 6f | 6e 20 67 72 61 70 68 69 |mple 3 o|n graphi|
|000022d0| 6e 67 20 61 62 73 6f 6c | 75 74 65 20 76 61 6c 75 |ng absol|ute valu|
|000022e0| 65 73 2e 0d 0a 00 00 17 | 4f 06 0d 0b 00 4e 6f 2e |es......|O....No.|
|000022f0| 20 20 54 6f 20 66 69 6e | 64 20 74 68 65 20 11 33 | To fin|d the .3|
|00002300| 79 11 31 2d 69 6e 74 65 | 72 63 65 70 74 2c 20 6c |y.1-inte|rcept, l|
|00002310| 65 74 20 11 33 78 20 11 | 31 3d 20 30 2e 20 20 54 |et .3x .|1= 0. T|
|00002320| 68 75 73 2c 20 77 65 20 | 68 61 76 65 20 11 33 79 |hus, we |have .3y|
|00002330| 20 11 31 3d 20 7c 2d 32 | 7c 20 3d 20 32 2e 20 20 | .1= |-2|| = 2. |
|00002340| 54 68 65 0d 0a 00 11 33 | 79 11 31 2d 69 6e 74 65 |The....3|y.1-inte|
|00002350| 72 63 65 70 74 20 69 73 | 20 28 30 2c 20 32 29 2e |rcept is| (0, 2).|
|00002360| 20 20 54 6f 20 66 69 6e | 64 20 74 68 65 20 11 33 | To fin|d the .3|
|00002370| 78 11 31 2d 69 6e 74 65 | 72 63 65 70 74 2c 20 6c |x.1-inte|rcept, l|
|00002380| 65 74 20 11 33 79 20 11 | 31 3d 20 30 2e 20 20 54 |et .3y .|1= 0. T|
|00002390| 68 75 73 2c 20 77 65 20 | 68 61 76 65 0d 0a 00 30 |hus, we |have...0|
|000023a0| 20 3d 20 7c 11 33 78 20 | 11 31 2d 20 32 7c 2e 20 | = |.3x |.1- 2|. |
|000023b0| 20 54 68 69 73 20 65 71 | 75 61 74 69 6f 6e 20 79 | This eq|uation y|
|000023c0| 69 65 6c 64 73 20 74 68 | 65 20 73 6f 6c 75 74 69 |ields th|e soluti|
|000023d0| 6f 6e 20 11 33 78 20 11 | 31 3d 20 32 2c 20 61 6e |on .3x .|1= 2, an|
|000023e0| 64 20 77 65 20 63 6f 6e | 63 6c 75 64 65 20 74 68 |d we con|clude th|
|000023f0| 61 74 0d 0a 00 74 68 65 | 72 65 20 69 73 20 61 6e |at...the|re is an|
|00002400| 20 11 33 78 11 31 2d 69 | 6e 74 65 72 63 65 70 74 | .3x.1-i|ntercept|
|00002410| 20 61 74 20 28 32 2c 20 | 30 29 2e 20 20 54 72 79 | at (2, |0). Try|
|00002420| 20 73 6b 65 74 63 68 69 | 6e 67 20 74 68 65 20 67 | sketchi|ng the g|
|00002430| 72 61 70 68 20 61 67 61 | 69 6e 2e 0d 0a 00 00 17 |raph aga|in......|
|00002440| 4f 03 0d 0b 00 57 72 6f | 6e 67 2e 20 20 4f 6e 65 |O....Wro|ng. One|
|00002450| 20 6f 66 20 74 68 65 20 | 61 62 6f 76 65 20 69 73 | of the |above is|
|00002460| 20 63 6f 72 72 65 63 74 | 2e 20 20 54 72 79 20 61 | correct|. Try a|
|00002470| 67 61 69 6e 2e 0d 0a 00 | 00 17 4f 03 0d 0b 00 52 |gain....|..O....R|
|00002480| 69 67 68 74 2e 20 20 54 | 68 65 20 67 72 61 70 68 |ight. T|he graph|
|00002490| 20 69 73 20 73 79 6d 6d | 65 74 72 69 63 61 6c 20 | is symm|etrical |
|000024a0| 77 69 74 68 20 72 65 73 | 70 65 63 74 20 74 6f 20 |with res|pect to |
|000024b0| 74 68 65 20 11 33 78 11 | 31 2d 61 78 69 73 2e 20 |the .3x.|1-axis. |
|000024c0| 20 0d 0a 00 00 17 4f 07 | 0d 0b 00 57 72 6f 6e 67 | .....O.|...Wrong|
|000024d0| 2e 20 20 59 6f 75 20 6d | 69 73 73 65 64 20 6f 6e |. You m|issed on|
|000024e0| 65 20 6f 66 20 74 68 65 | 20 69 6e 74 65 72 63 65 |e of the| interce|
|000024f0| 70 74 73 2e 20 20 4c 65 | 74 74 69 6e 67 20 11 33 |pts. Le|tting .3|
|00002500| 78 20 11 31 3d 20 30 2c | 20 77 65 20 68 61 76 65 |x .1= 0,| we have|
|00002510| 20 0d 0a 00 20 20 20 20 | 20 11 32 32 0d 0b 00 11 | ... | .22....|
|00002520| 31 30 20 3d 20 11 33 79 | 20 20 11 31 2d 20 31 2e |10 = .3y| .1- 1.|
|00002530| 20 20 53 6f 6c 76 69 6e | 67 20 66 6f 72 20 11 33 | Solvin|g for .3|
|00002540| 79 11 31 2c 20 77 65 20 | 6f 62 74 61 69 6e 20 74 |y.1, we |obtain t|
|00002550| 77 6f 20 73 6f 6c 75 74 | 69 6f 6e 73 3a 20 11 33 |wo solut|ions: .3|
|00002560| 79 20 11 31 3d 20 31 20 | 61 6e 64 20 11 33 79 20 |y .1= 1 |and .3y |
|00002570| 11 31 3d 20 2d 31 2e 0d | 0a 00 0d 0b 00 54 68 75 |.1= -1..|.....Thu|
|00002580| 73 2c 20 74 68 65 72 65 | 20 61 72 65 20 74 77 6f |s, there| are two|
|00002590| 20 11 33 79 11 31 2d 69 | 6e 74 65 72 63 65 70 74 | .3y.1-i|ntercept|
|000025a0| 73 3a 20 28 30 2c 20 31 | 29 20 61 6e 64 20 28 30 |s: (0, 1|) and (0|
|000025b0| 2c 20 2d 31 29 2e 20 20 | 54 72 79 20 73 6b 65 74 |, -1). |Try sket|
|000025c0| 63 68 69 6e 67 20 74 68 | 65 0d 0a 00 0d 0b 00 67 |ching th|e......g|
|000025d0| 72 61 70 68 20 61 67 61 | 69 6e 2e 0d 0a 00 00 17 |raph aga|in......|
|000025e0| 4f 07 0d 0b 00 57 72 6f | 6e 67 2e 20 20 59 6f 75 |O....Wro|ng. You|
|000025f0| 20 6d 69 73 73 65 64 20 | 74 77 6f 20 6f 66 20 74 | missed |two of t|
|00002600| 68 65 20 69 6e 74 65 72 | 63 65 70 74 73 2e 20 20 |he inter|cepts. |
|00002610| 4c 65 74 74 69 6e 67 20 | 11 33 78 20 11 31 3d 20 |Letting |.3x .1= |
|00002620| 30 2c 20 77 65 20 68 61 | 76 65 20 0d 0a 00 20 20 |0, we ha|ve ... |
|00002630| 20 20 20 11 32 32 0d 0b | 00 11 31 30 20 3d 20 11 | .22..|..10 = .|
|00002640| 33 79 20 20 11 31 2d 20 | 31 2e 20 20 53 6f 6c 76 |3y .1- |1. Solv|
|00002650| 69 6e 67 20 66 6f 72 20 | 11 33 79 11 31 2c 20 77 |ing for |.3y.1, w|
|00002660| 65 20 6f 62 74 61 69 6e | 20 74 77 6f 20 73 6f 6c |e obtain| two sol|
|00002670| 75 74 69 6f 6e 73 3a 20 | 11 33 79 20 11 31 3d 20 |utions: |.3y .1= |
|00002680| 31 20 61 6e 64 20 11 33 | 79 20 11 31 3d 20 2d 31 |1 and .3|y .1= -1|
|00002690| 2e 0d 0a 00 0d 0b 00 54 | 68 75 73 2c 20 74 68 65 |.......T|hus, the|
|000026a0| 72 65 20 61 72 65 20 74 | 77 6f 20 11 33 79 11 31 |re are t|wo .3y.1|
|000026b0| 2d 69 6e 74 65 72 63 65 | 70 74 73 3a 20 28 30 2c |-interce|pts: (0,|
|000026c0| 20 31 29 20 61 6e 64 20 | 28 30 2c 20 2d 31 29 2e | 1) and |(0, -1).|
|000026d0| 20 20 54 72 79 20 73 6b | 65 74 63 68 69 6e 67 20 | Try sk|etching |
|000026e0| 74 68 65 0d 0a 00 0d 0b | 00 67 72 61 70 68 20 61 |the.....|.graph a|
|000026f0| 67 61 69 6e 2e 0d 0a 00 | 00 17 4f 03 0d 0b 00 57 |gain....|..O....W|
|00002700| 72 6f 6e 67 2e 20 20 4f | 6e 65 20 6f 66 20 74 68 |rong. O|ne of th|
|00002710| 65 20 61 62 6f 76 65 20 | 69 73 20 63 6f 72 72 65 |e above |is corre|
|00002720| 63 74 2e 20 20 54 72 79 | 20 61 67 61 69 6e 2e 0d |ct. Try| again..|
|00002730| 0a 00 00 17 4f 04 0d 0b | 00 4e 6f 74 20 71 75 69 |....O...|.Not qui|
|00002740| 74 65 2e 20 20 54 68 69 | 73 20 70 6f 69 6e 74 20 |te. Thi|s point |
|00002750| 64 6f 65 73 20 6c 69 65 | 20 6f 6e 20 74 68 65 20 |does lie| on the |
|00002760| 67 72 61 70 68 20 6f 66 | 20 74 68 65 20 67 69 76 |graph of| the giv|
|00002770| 65 6e 20 65 71 75 61 74 | 69 6f 6e 2c 20 62 75 74 |en equat|ion, but|
|00002780| 20 73 6f 0d 0a 00 64 6f | 65 73 20 49 49 2e 0d 0a | so...do|es II...|
|00002790| 00 00 17 4f 04 0d 0b 00 | 4e 6f 74 20 71 75 69 74 |...O....|Not quit|
|000027a0| 65 2e 20 20 54 68 69 73 | 20 70 6f 69 6e 74 20 64 |e. This| point d|
|000027b0| 6f 65 73 20 6c 69 65 20 | 6f 6e 20 74 68 65 20 67 |oes lie |on the g|
|000027c0| 72 61 70 68 20 6f 66 20 | 74 68 65 20 67 69 76 65 |raph of |the give|
|000027d0| 6e 20 65 71 75 61 74 69 | 6f 6e 2c 20 62 75 74 20 |n equati|on, but |
|000027e0| 73 6f 0d 0a 00 64 6f 65 | 73 20 49 2e 0d 0a 00 00 |so...doe|s I.....|
|000027f0| 17 4f 03 0d 0b 00 52 69 | 67 68 74 2e 20 20 42 6f |.O....Ri|ght. Bo|
|00002800| 74 68 20 6f 66 20 74 68 | 65 73 65 20 70 6f 69 6e |th of th|ese poin|
|00002810| 74 73 20 6c 69 65 20 6f | 6e 20 74 68 65 20 67 72 |ts lie o|n the gr|
|00002820| 61 70 68 20 6f 66 20 74 | 68 65 20 67 69 76 65 6e |aph of t|he given|
|00002830| 20 65 71 75 61 74 69 6f | 6e 2e 0d 0a 00 00 17 4f | equatio|n......O|
|00002840| 04 0d 0b 00 57 72 6f 6e | 67 2e 20 20 42 6f 74 68 |....Wron|g. Both|
|00002850| 20 6f 66 20 74 68 65 73 | 65 20 70 6f 69 6e 74 73 | of thes|e points|
|00002860| 20 6c 69 65 20 6f 6e 20 | 74 68 65 20 67 72 61 70 | lie on |the grap|
|00002870| 68 20 6f 66 20 74 68 65 | 20 67 69 76 65 6e 20 65 |h of the| given e|
|00002880| 71 75 61 74 69 6f 6e 20 | 73 69 6e 63 65 0d 0a 00 |quation |since...|
|00002890| 62 6f 74 68 20 70 6f 69 | 6e 74 73 20 61 72 65 20 |both poi|nts are |
|000028a0| 73 6f 6c 75 74 69 6f 6e | 73 20 6f 66 20 74 68 65 |solution|s of the|
|000028b0| 20 67 69 76 65 6e 20 65 | 71 75 61 74 69 6f 6e 2e | given e|quation.|
|000028c0| 0d 0a 00 00 17 4f 0b 0d | 0b 00 57 72 6f 6e 67 2e |.....O..|..Wrong.|
|000028d0| 20 20 54 68 65 20 72 61 | 64 69 75 73 20 11 33 72 | The ra|dius .3r|
|000028e0| 20 11 31 6f 66 20 74 68 | 65 20 63 69 72 63 6c 65 | .1of th|e circle|
|000028f0| 20 69 73 20 74 68 65 20 | 64 69 73 74 61 6e 63 65 | is the |distance|
|00002900| 20 62 65 74 77 65 65 6e | 20 28 2d 33 2c 20 34 29 | between| (-3, 4)|
|00002910| 20 61 6e 64 20 0d 0a 00 | 28 30 2c 20 30 29 2e 20 | and ...|(0, 0). |
|00002920| 20 54 68 75 73 2c 20 77 | 65 20 68 61 76 65 20 74 | Thus, w|e have t|
|00002930| 68 65 20 66 6f 6c 6c 6f | 77 69 6e 67 2e 20 20 20 |he follo|wing. |
|00002940| 20 20 20 20 20 20 20 20 | 20 12 30 0d 0a 00 20 20 | | .0... |
|00002950| 20 20 20 20 20 20 20 20 | 20 11 34 67 32 32 32 32 | | .4g2222|
|00002960| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002970| 32 20 20 20 20 20 67 32 | 32 32 32 32 20 20 20 20 |2 g2|2222 |
|00002980| 20 67 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | g2... | |
|00002990| 66 20 20 20 20 20 20 20 | 20 20 20 11 32 32 20 20 |f | .22 |
|000029a0| 20 20 20 20 20 20 20 20 | 32 20 20 20 20 11 34 66 | |2 .4f|
|000029b0| 20 20 20 20 20 20 20 20 | 20 20 66 0d 0b 00 20 20 | | f... |
|000029c0| 20 20 20 11 33 72 20 11 | 31 3d 20 11 34 76 20 11 | .3r .|1= .4v .|
|000029d0| 31 5b 30 20 2d 20 28 2d | 33 29 5d 20 20 2b 20 28 |1[0 - (-|3)] + (|
|000029e0| 30 20 2d 20 34 29 20 20 | 3d 20 11 34 76 20 11 31 |0 - 4) |= .4v .1|
|000029f0| 39 20 2b 20 31 36 20 3d | 20 11 34 76 20 11 31 32 |9 + 16 =| .4v .12|
|00002a00| 35 20 3d 20 35 12 30 0d | 0a 00 0d 0b 00 57 69 74 |5 = 5.0.|.....Wit|
|00002a10| 68 20 74 68 65 20 63 65 | 6e 74 65 72 20 28 11 33 |h the ce|nter (.3|
|00002a20| 68 11 31 2c 20 11 33 6b | 11 31 29 20 3d 20 28 2d |h.1, .3k|.1) = (-|
|00002a30| 33 2c 20 34 29 20 61 6e | 64 20 74 68 65 20 72 61 |3, 4) an|d the ra|
|00002a40| 64 69 75 73 20 11 33 72 | 20 11 31 3d 20 35 2c 20 |dius .3r| .1= 5, |
|00002a50| 77 65 20 77 72 69 74 65 | 20 74 68 65 20 0d 0a 00 |we write| the ...|
|00002a60| 73 74 61 6e 64 61 72 64 | 20 66 6f 72 6d 20 6f 66 |standard| form of|
|00002a70| 20 74 68 65 20 65 71 75 | 61 74 69 6f 6e 20 6f 66 | the equ|ation of|
|00002a80| 20 74 68 65 20 63 69 72 | 63 6c 65 20 61 73 20 66 | the cir|cle as f|
|00002a90| 6f 6c 6c 6f 77 73 2e 12 | 30 0d 0a 00 20 20 20 20 |ollows..|0... |
|00002aa0| 20 20 20 20 20 20 20 20 | 11 32 32 20 20 20 20 20 | |.22 |
|00002ab0| 20 20 20 20 20 32 20 20 | 20 20 32 20 20 20 20 20 | 2 | 2 |
|00002ac0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 32 20 | | 2 |
|00002ad0| 20 20 20 20 20 20 20 20 | 20 32 20 20 20 20 20 20 | | 2 |
|00002ae0| 32 0d 0b 00 20 20 20 20 | 20 11 31 28 11 33 78 20 |2... | .1(.3x |
|00002af0| 11 31 2d 20 11 33 68 11 | 31 29 20 20 2b 20 28 11 |.1- .3h.|1) + (.|
|00002b00| 33 79 20 11 31 2d 20 11 | 33 6b 11 31 29 20 20 3d |3y .1- .|3k.1) =|
|00002b10| 20 11 33 72 20 20 20 20 | 11 34 35 35 36 20 20 20 | .3r |.4556 |
|00002b20| 11 31 5b 11 33 78 20 11 | 31 2d 20 28 2d 33 29 5d |.1[.3x .|1- (-3)]|
|00002b30| 20 20 2b 20 28 11 33 79 | 20 11 31 2d 20 34 29 20 | + (.3y| .1- 4) |
|00002b40| 20 3d 20 28 35 29 0d 0a | 00 20 20 20 20 20 20 20 | = (5)..|. |
|00002b50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002b60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002b70| 20 20 20 20 20 20 20 20 | 20 11 32 32 20 20 20 20 | | .22 |
|00002b80| 20 20 20 20 20 20 32 0d | 0b 00 20 20 20 20 20 20 | 2.|.. |
|00002b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002ba0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002bb0| 20 20 20 11 31 28 11 33 | 78 20 11 31 2b 20 33 29 | .1(.3|x .1+ 3)|
|00002bc0| 20 20 2b 20 28 11 33 79 | 20 11 31 2d 20 34 29 20 | + (.3y| .1- 4) |
|00002bd0| 20 3d 20 32 35 0d 0a 00 | 00 17 4f 07 20 20 20 20 | = 25...|..O. |
|00002be0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002c00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002c10| 20 20 20 20 20 20 20 20 | 0d 0b 00 11 31 57 72 6f | |....1Wro|
|00002c20| 6e 67 2e 20 20 57 69 74 | 68 20 74 68 65 20 63 65 |ng. Wit|h the ce|
|00002c30| 6e 74 65 72 20 28 11 33 | 68 11 31 2c 20 11 33 6b |nter (.3|h.1, .3k|
|00002c40| 11 31 29 20 3d 20 28 2d | 33 2c 20 34 29 20 61 6e |.1) = (-|3, 4) an|
|00002c50| 64 20 74 68 65 20 72 61 | 64 69 75 73 20 11 33 72 |d the ra|dius .3r|
|00002c60| 20 11 31 3d 20 35 2c 20 | 77 65 20 77 72 69 74 65 | .1= 5, |we write|
|00002c70| 20 0d 0a 00 74 68 65 20 | 73 74 61 6e 64 61 72 64 | ...the |standard|
|00002c80| 20 66 6f 72 6d 20 6f 66 | 20 74 68 65 20 65 71 75 | form of| the equ|
|00002c90| 61 74 69 6f 6e 20 6f 66 | 20 74 68 65 20 63 69 72 |ation of| the cir|
|00002ca0| 63 6c 65 20 61 73 20 66 | 6f 6c 6c 6f 77 73 2e 12 |cle as f|ollows..|
|00002cb0| 30 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |0... | |
|00002cc0| 11 32 32 20 20 20 20 20 | 20 20 20 20 20 32 20 20 |.22 | 2 |
|00002cd0| 20 20 32 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00002ce0| 20 20 20 20 20 20 32 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00002cf0| 20 32 20 20 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | 2 |2... |
|00002d00| 20 11 31 28 11 33 78 20 | 11 31 2d 20 11 33 68 11 | .1(.3x |.1- .3h.|
|00002d10| 31 29 20 20 2b 20 28 11 | 33 79 20 11 31 2d 20 11 |1) + (.|3y .1- .|
|00002d20| 33 6b 11 31 29 20 20 3d | 20 11 33 72 20 20 20 20 |3k.1) =| .3r |
|00002d30| 11 34 35 35 36 20 20 20 | 11 31 5b 11 33 78 20 11 |.4556 |.1[.3x .|
|00002d40| 31 2d 20 28 2d 33 29 5d | 20 20 2b 20 28 11 33 79 |1- (-3)]| + (.3y|
|00002d50| 20 11 31 2d 20 34 29 20 | 20 3d 20 28 35 29 0d 0a | .1- 4) | = (5)..|
|00002d60| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00002d70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002d80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002d90| 20 11 32 32 20 20 20 20 | 20 20 20 20 20 20 32 0d | .22 | 2.|
|00002da0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00002db0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002dc0| 20 20 20 20 20 20 20 20 | 20 20 20 11 31 28 11 33 | | .1(.3|
|00002dd0| 78 20 11 31 2b 20 33 29 | 20 20 2b 20 28 11 33 79 |x .1+ 3)| + (.3y|
|00002de0| 20 11 31 2d 20 34 29 20 | 20 3d 20 32 35 0d 0a 00 | .1- 4) | = 25...|
|00002df0| 00 17 4f 03 0d 0b 00 47 | 6f 6f 64 20 6a 6f 62 2e |..O....G|ood job.|
|00002e00| 20 20 54 68 69 73 20 69 | 73 20 74 68 65 20 73 74 | This i|s the st|
|00002e10| 61 6e 64 61 72 64 20 66 | 6f 72 6d 20 6f 66 20 74 |andard f|orm of t|
|00002e20| 68 65 20 73 70 65 63 69 | 66 69 65 64 20 63 69 72 |he speci|fied cir|
|00002e30| 63 6c 65 2e 0d 0a 00 00 | 17 4f 07 20 20 20 20 20 |cle.....|.O. |
|00002e40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002e50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002e60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002e70| 20 20 20 20 20 20 20 0d | 0b 00 11 31 57 72 6f 6e | .|...1Wron|
|00002e80| 67 2e 20 20 57 69 74 68 | 20 74 68 65 20 63 65 6e |g. With| the cen|
|00002e90| 74 65 72 20 28 11 33 68 | 11 31 2c 20 11 33 6b 11 |ter (.3h|.1, .3k.|
|00002ea0| 31 29 20 3d 20 28 2d 33 | 2c 20 34 29 20 61 6e 64 |1) = (-3|, 4) and|
|00002eb0| 20 74 68 65 20 72 61 64 | 69 75 73 20 11 33 72 20 | the rad|ius .3r |
|00002ec0| 11 31 3d 20 35 2c 20 77 | 65 20 77 72 69 74 65 20 |.1= 5, w|e write |
|00002ed0| 0d 0a 00 74 68 65 20 73 | 74 61 6e 64 61 72 64 20 |...the s|tandard |
|00002ee0| 66 6f 72 6d 20 6f 66 20 | 74 68 65 20 65 71 75 61 |form of |the equa|
|00002ef0| 74 69 6f 6e 20 6f 66 20 | 74 68 65 20 63 69 72 63 |tion of |the circ|
|00002f00| 6c 65 20 61 73 20 66 6f | 6c 6c 6f 77 73 2e 12 30 |le as fo|llows..0|
|00002f10| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |... | .|
|00002f20| 32 32 20 20 20 20 20 20 | 20 20 20 20 32 20 20 20 |22 | 2 |
|00002f30| 20 32 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00002f40| 20 20 20 20 20 32 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00002f50| 32 20 20 20 20 20 20 32 | 0d 0b 00 20 20 20 20 20 |2 2|... |
|00002f60| 11 31 28 11 33 78 20 11 | 31 2d 20 11 33 68 11 31 |.1(.3x .|1- .3h.1|
|00002f70| 29 20 20 2b 20 28 11 33 | 79 20 11 31 2d 20 11 33 |) + (.3|y .1- .3|
|00002f80| 6b 11 31 29 20 20 3d 20 | 11 33 72 20 20 20 20 11 |k.1) = |.3r .|
|00002f90| 34 35 35 36 20 20 20 11 | 31 5b 11 33 78 20 11 31 |4556 .|1[.3x .1|
|00002fa0| 2d 20 28 2d 33 29 5d 20 | 20 2b 20 28 11 33 79 20 |- (-3)] | + (.3y |
|00002fb0| 11 31 2d 20 34 29 20 20 | 3d 20 28 35 29 0d 0a 00 |.1- 4) |= (5)...|
|00002fc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002fd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002fe0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002ff0| 11 32 32 20 20 20 20 20 | 20 20 20 20 20 32 0d 0b |.22 | 2..|
|00003000| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00003010| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003020| 20 20 20 20 20 20 20 20 | 20 20 11 31 28 11 33 78 | | .1(.3x|
|00003030| 20 11 31 2b 20 33 29 20 | 20 2b 20 28 11 33 79 20 | .1+ 3) | + (.3y |
|00003040| 11 31 2d 20 34 29 20 20 | 3d 20 32 35 0d 0a 00 00 |.1- 4) |= 25....|
|00003050| 17 4f 04 0d 0b 00 57 72 | 6f 6e 67 2e 20 20 43 68 |.O....Wr|ong. Ch|
|00003060| 65 63 6b 20 79 6f 75 72 | 20 77 6f 72 6b 2e 20 20 |eck your| work. |
|00003070| 59 6f 75 20 6d 69 73 73 | 65 64 20 62 6f 74 68 20 |You miss|ed both |
|00003080| 73 69 67 6e 73 20 69 6e | 20 74 68 65 20 63 6f 6f |signs in| the coo|
|00003090| 72 64 69 6e 61 74 65 73 | 20 66 6f 72 20 74 68 65 |rdinates| for the|
|000030a0| 20 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 | ... | |
|000030b0| 20 20 20 20 11 32 32 0d | 0b 00 11 31 63 65 6e 74 | .22.|...1cent|
|000030c0| 65 72 2e 20 20 41 6c 73 | 6f 2c 20 11 33 72 20 20 |er. Als|o, .3r |
|000030d0| 11 31 3d 20 39 2f 34 2c | 20 73 6f 20 74 68 65 20 |.1= 9/4,| so the |
|000030e0| 72 61 64 69 75 73 20 69 | 73 20 33 2f 32 2e 0d 0a |radius i|s 3/2...|
|000030f0| 00 00 17 4f 04 0d 0b 00 | 57 72 6f 6e 67 2e 20 20 |...O....|Wrong. |
|00003100| 54 68 65 20 63 65 6e 74 | 65 72 20 69 73 20 63 6f |The cent|er is co|
|00003110| 72 72 65 63 74 2c 20 62 | 75 74 20 74 68 65 20 72 |rrect, b|ut the r|
|00003120| 61 64 69 75 73 20 69 73 | 20 77 72 6f 6e 67 2e 20 |adius is| wrong. |
|00003130| 20 43 68 65 63 6b 20 79 | 6f 75 72 20 77 6f 72 6b | Check y|our work|
|00003140| 2c 0d 0a 00 65 73 70 65 | 63 69 61 6c 6c 79 20 74 |,...espe|cially t|
|00003150| 68 65 20 73 74 65 70 20 | 69 6e 20 77 68 69 63 68 |he step |in which|
|00003160| 20 79 6f 75 20 63 6f 6d | 70 6c 65 74 65 64 20 74 | you com|pleted t|
|00003170| 68 65 20 73 71 75 61 72 | 65 2e 0d 0a 00 00 17 4f |he squar|e......O|
|00003180| 03 0d 0b 00 52 69 67 68 | 74 2e 20 20 59 6f 75 20 |....Righ|t. You |
|00003190| 73 6b 65 74 63 68 65 64 | 20 74 68 65 20 63 69 72 |sketched| the cir|
|000031a0| 63 6c 65 20 63 6f 72 72 | 65 63 74 6c 79 2e 0d 0a |cle corr|ectly...|
|000031b0| 00 00 17 4f 03 0d 0b 00 | 57 72 6f 6e 67 2e 20 20 |...O....|Wrong. |
|000031c0| 4f 6e 65 20 6f 66 20 74 | 68 65 20 61 62 6f 76 65 |One of t|he above|
|000031d0| 20 69 73 20 63 6f 72 72 | 65 63 74 2e 20 20 54 72 | is corr|ect. Tr|
|000031e0| 79 20 61 67 61 69 6e 2e | 0d 0a 00 53 65 63 74 69 |y again.|...Secti|
|000031f0| 6f 6e 20 31 2e 31 20 20 | 47 72 61 70 68 73 20 61 |on 1.1 |Graphs a|
|00003200| 6e 64 20 47 72 61 70 68 | 69 6e 67 20 55 74 69 6c |nd Graph|ing Util|
|00003210| 69 74 69 65 73 0d 0a 00 | 0d 0a 00 0d 0b 00 20 20 |ities...|...... |
|00003220| 20 20 0e 78 31 2d 31 2d | 31 0e 54 75 74 6f 72 69 | .x1-1-|1.Tutori|
|00003230| 61 6c 20 45 78 65 72 63 | 69 73 65 20 20 31 0f 0d |al Exerc|ise 1..|
|00003240| 0a 00 0d 0b 00 20 20 20 | 20 0e 78 31 2d 31 2d 32 |..... | .x1-1-2|
|00003250| 0e 54 75 74 6f 72 69 61 | 6c 20 45 78 65 72 63 69 |.Tutoria|l Exerci|
|00003260| 73 65 20 20 32 0f 20 20 | 20 20 0e 78 31 2d 31 2d |se 2. | .x1-1-|
|00003270| 33 0e 54 75 74 6f 72 69 | 61 6c 20 45 78 65 72 63 |3.Tutori|al Exerc|
|00003280| 69 73 65 20 20 33 0f 0d | 0a 00 0d 0b 00 20 20 20 |ise 3..|..... |
|00003290| 20 0e 78 31 2d 31 2d 34 | 0e 54 75 74 6f 72 69 61 | .x1-1-4|.Tutoria|
|000032a0| 6c 20 45 78 65 72 63 69 | 73 65 20 20 34 0f 20 20 |l Exerci|se 4. |
|000032b0| 20 20 0e 78 31 2d 31 2d | 35 0e 54 75 74 6f 72 69 | .x1-1-|5.Tutori|
|000032c0| 61 6c 20 45 78 65 72 63 | 69 73 65 20 20 35 0f 0d |al Exerc|ise 5..|
|000032d0| 0a 00 0d 0b 00 20 20 20 | 20 0e 78 31 2d 31 2d 36 |..... | .x1-1-6|
|000032e0| 0e 54 75 74 6f 72 69 61 | 6c 20 45 78 65 72 63 69 |.Tutoria|l Exerci|
|000032f0| 73 65 20 20 36 0f 0d 0a | 00 0d 0b 00 20 20 20 20 |se 6...|.... |
|00003300| 0e 78 31 2d 31 2d 37 0e | 54 75 74 6f 72 69 61 6c |.x1-1-7.|Tutorial|
|00003310| 20 45 78 65 72 63 69 73 | 65 20 20 37 0f 0d 0a 00 | Exercis|e 7....|
|00003320| 0d 0b 00 20 20 20 20 0e | 78 31 2d 31 2d 38 0e 54 |... .|x1-1-8.T|
|00003330| 75 74 6f 72 69 61 6c 20 | 45 78 65 72 63 69 73 65 |utorial |Exercise|
|00003340| 20 20 38 0f 20 20 20 20 | 0e 78 31 2d 31 2d 39 0e | 8. |.x1-1-9.|
|00003350| 54 75 74 6f 72 69 61 6c | 20 45 78 65 72 63 69 73 |Tutorial| Exercis|
|00003360| 65 20 20 39 0f 20 20 20 | 20 0e 78 31 2d 31 2d 31 |e 9. | .x1-1-1|
|00003370| 30 0e 54 75 74 6f 72 69 | 61 6c 20 45 78 65 72 63 |0.Tutori|al Exerc|
|00003380| 69 73 65 20 31 30 0f 20 | 20 20 20 0e 78 31 2d 31 |ise 10. | .x1-1|
|00003390| 2d 31 31 0e 54 75 74 6f | 72 69 61 6c 20 45 78 65 |-11.Tuto|rial Exe|
|000033a0| 72 63 69 73 65 20 31 31 | 0f 20 20 20 20 0e 78 31 |rcise 11|. .x1|
|000033b0| 2d 31 2d 31 32 0e 54 75 | 74 6f 72 69 61 6c 20 45 |-1-12.Tu|torial E|
|000033c0| 78 65 72 63 69 73 65 20 | 31 32 0f 0d 0a 00 0d 0b |xercise |12......|
|000033d0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000033e0| 20 20 20 20 0e 78 31 2d | 31 2d 31 33 0e 54 75 74 | .x1-|1-13.Tut|
|000033f0| 6f 72 69 61 6c 20 45 78 | 65 72 63 69 73 65 20 31 |orial Ex|ercise 1|
|00003400| 33 0f 0d 0a 00 53 65 63 | 74 69 6f 6e 20 31 2e 31 |3....Sec|tion 1.1|
|00003410| 20 20 47 72 61 70 68 73 | 20 61 6e 64 20 47 72 61 | Graphs| and Gra|
|00003420| 70 68 69 6e 67 20 55 74 | 69 6c 69 74 69 65 73 0d |phing Ut|ilities.|
|00003430| 0b 00 20 31 2e 20 20 44 | 65 74 65 72 6d 69 6e 65 |.. 1. D|etermine|
|00003440| 20 77 68 69 63 68 20 6f | 66 20 74 68 65 20 66 6f | which o|f the fo|
|00003450| 6c 6c 6f 77 69 6e 67 20 | 70 6f 69 6e 74 73 20 6c |llowing |points l|
|00003460| 69 65 20 6f 6e 20 74 68 | 65 20 67 72 61 70 68 20 |ie on th|e graph |
|00003470| 6f 66 20 74 68 65 20 65 | 71 75 61 74 69 6f 6e 0d |of the e|quation.|
|00003480| 0a 00 20 20 20 20 20 20 | 11 32 32 20 20 20 20 20 |.. |.22 |
|00003490| 32 0d 0b 00 20 20 20 20 | 20 11 33 78 20 79 20 11 |2... | .3x y .|
|000034a0| 31 2d 20 11 33 78 20 20 | 11 31 2b 20 34 11 33 79 |1- .3x |.1+ 4.3y|
|000034b0| 20 11 31 3d 20 30 2e 0d | 0a 00 0d 0b 00 20 20 20 | .1= 0..|..... |
|000034c0| 20 20 20 20 20 11 34 28 | 20 20 20 20 29 20 20 20 | .4(| ) |
|000034d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000034e0| 20 20 20 20 20 20 20 20 | 20 28 20 20 20 20 20 29 | | ( )|
|000034f0| 0d 0b 00 20 20 20 20 20 | 20 20 20 21 20 20 20 11 |... | ! .|
|00003500| 31 34 11 34 21 20 20 20 | 20 20 20 20 20 20 20 20 |14.4! | |
|00003510| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003520| 20 21 20 20 20 20 11 31 | 39 11 34 21 0d 0b 00 20 | ! .1|9.4!... |
|00003530| 20 20 20 20 11 31 49 2e | 20 11 34 21 11 31 34 2c | .1I.| .4!.14,|
|00003540| 20 11 34 32 21 20 20 20 | 20 20 20 20 20 20 20 20 | .42! | |
|00003550| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 49 | | .1I|
|00003560| 49 2e 20 11 34 21 11 31 | 36 2c 20 11 34 32 32 21 |I. .4!.1|6, .422!|
|00003570| 0d 0b 00 20 20 20 20 20 | 20 20 20 21 20 20 20 11 |... | ! .|
|00003580| 31 35 11 34 21 20 20 20 | 20 20 20 20 20 20 20 20 |15.4! | |
|00003590| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000035a0| 20 21 20 20 20 11 31 31 | 30 11 34 21 0d 0b 00 20 | ! .11|0.4!... |
|000035b0| 20 20 20 20 20 20 20 39 | 20 20 20 20 30 20 20 20 | 9| 0 |
|000035c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000035d0| 20 20 20 20 20 20 20 20 | 20 39 20 20 20 20 20 30 | | 9 0|
|000035e0| 0d 0a 00 0d 0a 00 20 20 | 20 20 20 11 31 0e 33 2d |...... | .1.3-|
|000035f0| 32 2d 35 61 0e 28 61 29 | 0f 20 49 20 20 20 20 20 |2-5a.(a)|. I |
|00003600| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003610| 20 20 20 20 20 20 20 0e | 33 2d 32 2d 35 62 0e 28 | .|3-2-5b.(|
|00003620| 62 29 0f 20 49 49 0d 0a | 00 0d 0b 00 20 20 20 20 |b). II..|.... |
|00003630| 20 0e 33 2d 32 2d 35 63 | 0e 28 63 29 0f 20 49 20 | .3-2-5c|.(c). I |
|00003640| 61 6e 64 20 49 49 20 20 | 20 20 20 20 20 20 20 20 |and II | |
|00003650| 20 20 20 20 20 20 20 20 | 20 20 20 0e 33 2d 32 2d | | .3-2-|
|00003660| 35 64 0e 28 64 29 0f 20 | 4e 6f 6e 65 20 6f 66 20 |5d.(d). |None of |
|00003670| 74 68 65 73 65 0d 0a 00 | 0d 0a 00 59 6f 75 20 6d |these...|...You m|
|00003680| 61 79 20 77 61 6e 74 20 | 74 6f 20 72 65 76 69 65 |ay want |to revie|
|00003690| 77 20 10 31 2d 31 2d 32 | 0e 65 31 2d 31 2d 31 0e |w .1-1-2|.e1-1-1.|
|000036a0| 47 75 69 64 65 64 20 45 | 78 61 6d 70 6c 65 20 31 |Guided E|xample 1|
|000036b0| 2e 0f 0d 0a 00 53 65 63 | 74 69 6f 6e 20 31 2e 31 |.....Sec|tion 1.1|
|000036c0| 20 20 47 72 61 70 68 73 | 20 61 6e 64 20 47 72 61 | Graphs| and Gra|
|000036d0| 70 68 69 6e 67 20 55 74 | 69 6c 69 74 69 65 73 20 |phing Ut|ilities |
|000036e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000036f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003700| 20 20 20 20 20 20 20 20 | 20 20 11 32 33 0d 0b 00 | | .23...|
|00003710| 11 31 31 30 2e 20 20 53 | 6b 65 74 63 68 20 74 68 |.110. S|ketch th|
|00003720| 65 20 67 72 61 70 68 20 | 6f 66 20 74 68 65 20 65 |e graph |of the e|
|00003730| 71 75 61 74 69 6f 6e 20 | 11 33 79 20 11 31 3d 20 |quation |.3y .1= |
|00003740| 11 33 78 20 20 11 31 2b | 20 32 2e 20 20 49 64 65 |.3x .1+| 2. Ide|
|00003750| 6e 74 69 66 79 20 61 6e | 79 20 69 6e 74 65 72 63 |ntify an|y interc|
|00003760| 65 70 74 73 20 61 6e 64 | 0d 0a 00 20 20 20 20 20 |epts and|... |
|00003770| 74 65 73 74 20 66 6f 72 | 20 73 79 6d 6d 65 74 72 |test for| symmetr|
|00003780| 79 2e 0d 0a 00 0d 0a 00 | 20 20 20 20 20 0e 33 2d |y.......| .3-|
|00003790| 32 2d 34 35 61 0e 28 61 | 29 0f 20 20 20 20 20 20 |2-45a.(a|). |
|000037a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 0e 33 2d | | .3-|
|000037b0| 32 2d 34 35 62 0e 28 62 | 29 0f 20 20 20 20 20 20 |2-45b.(b|). |
|000037c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 0e 33 2d | | .3-|
|000037d0| 32 2d 34 35 63 0e 28 63 | 29 0f 0d 0a 00 14 6a 33 |2-45c.(c|).....j3|
|000037e0| 2d 32 2d 34 35 61 2e 6d | 14 39 14 37 14 32 30 14 |-2-45a.m|.9.7.20.|
|000037f0| 37 14 20 20 14 6a 33 2d | 32 2d 34 35 62 2e 6d 14 |7. .j3-|2-45b.m.|
|00003800| 33 31 14 37 14 32 30 14 | 37 14 20 20 14 6a 33 2d |31.7.20.|7. .j3-|
|00003810| 32 2d 34 35 63 2e 6d 14 | 35 33 14 37 14 32 30 14 |2-45c.m.|53.7.20.|
|00003820| 37 14 20 20 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |7. ....|........|
|00003830| 0d 0a 00 0d 0a 00 20 20 | 20 20 20 20 20 20 20 49 |...... | I|
|00003840| 6e 74 65 72 63 65 70 74 | 3a 20 28 30 2c 20 30 29 |ntercept|: (0, 0)|
|00003850| 20 20 20 20 20 49 6e 74 | 65 72 63 65 70 74 73 3a | Int|ercepts:|
|00003860| 20 28 30 2c 20 32 29 20 | 20 20 20 49 6e 74 65 72 | (0, 2) | Inter|
|00003870| 63 65 70 74 73 3a 20 28 | 30 2c 20 32 29 0d 0a 00 |cepts: (|0, 2)...|
|00003880| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003890| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000038a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000038b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 34 | | .4|
|000038c0| 28 20 20 20 67 20 20 20 | 29 0d 0b 00 20 20 20 20 |( g |)... |
|000038d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000038e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000038f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003900| 20 20 20 20 20 20 20 20 | 20 20 21 20 11 32 33 11 | | ! .23.|
|00003910| 34 66 20 20 20 20 21 0d | 0b 00 20 20 20 20 20 20 |4f !.|.. |
|00003920| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003930| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003940| 20 20 20 20 11 31 28 2d | 32 2c 20 30 29 20 20 20 | .1(-|2, 0) |
|00003950| 20 20 20 20 20 20 20 20 | 20 20 11 34 21 11 31 2d | | .4!.1-|
|00003960| 11 34 76 20 11 31 32 2c | 20 30 11 34 21 0d 0b 00 |.4v .12,| 0.4!...|
|00003970| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003980| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003990| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000039a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 39 20 | | 9 |
|000039b0| 20 20 20 20 20 20 30 0d | 0a 00 0d 0a 00 20 20 20 | 0.|..... |
|000039c0| 20 20 11 31 0e 33 2d 32 | 2d 34 35 64 0e 28 64 29 | .1.3-2|-45d.(d)|
|000039d0| 0f 20 4e 6f 6e 65 20 6f | 66 20 74 68 65 73 65 0d |. None o|f these.|
|000039e0| 0a 00 0d 0a 00 59 6f 75 | 20 6d 61 79 20 77 61 6e |.....You| may wan|
|000039f0| 74 20 74 6f 20 72 65 76 | 69 65 77 20 10 31 2d 31 |t to rev|iew .1-1|
|00003a00| 2d 32 0e 69 31 2d 31 2d | 32 0e 49 6e 74 65 67 72 |-2.i1-1-|2.Integr|
|00003a10| 61 74 65 64 20 45 78 61 | 6d 70 6c 65 20 32 2e 0f |ated Exa|mple 2..|
|00003a20| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 31 2e 31 20 20 |...Secti|on 1.1 |
|00003a30| 47 72 61 70 68 73 20 61 | 6e 64 20 47 72 61 70 68 |Graphs a|nd Graph|
|00003a40| 69 6e 67 20 55 74 69 6c | 69 74 69 65 73 20 20 20 |ing Util|ities |
|00003a50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003a60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003a70| 20 20 20 20 20 20 20 20 | 11 34 44 32 32 32 32 32 | |.4D22222|
|00003a80| 0d 0b 00 11 31 31 31 2e | 20 20 53 6b 65 74 63 68 |....111.| Sketch|
|00003a90| 20 74 68 65 20 67 72 61 | 70 68 20 6f 66 20 74 68 | the gra|ph of th|
|00003aa0| 65 20 65 71 75 61 74 69 | 6f 6e 20 11 33 79 20 11 |e equati|on .3y .|
|00003ab0| 31 3d 20 11 34 53 20 11 | 33 78 20 11 31 2d 20 33 |1= .4S .|3x .1- 3|
|00003ac0| 2e 20 20 49 64 65 6e 74 | 69 66 79 20 61 6e 79 20 |. Ident|ify any |
|00003ad0| 69 6e 74 65 72 63 65 70 | 74 73 20 0d 0a 00 20 20 |intercep|ts ... |
|00003ae0| 20 20 20 61 6e 64 20 74 | 65 73 74 20 66 6f 72 20 | and t|est for |
|00003af0| 73 79 6d 6d 65 74 72 79 | 2e 0d 0a 00 0d 0a 00 20 |symmetry|....... |
|00003b00| 20 20 20 20 0e 33 2d 32 | 2d 34 39 61 0e 28 61 29 | .3-2|-49a.(a)|
|00003b10| 0f 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00003b20| 20 20 20 20 0e 33 2d 32 | 2d 34 39 62 0e 28 62 29 | .3-2|-49b.(b)|
|00003b30| 0f 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00003b40| 20 20 20 20 0e 33 2d 32 | 2d 34 39 63 0e 28 63 29 | .3-2|-49c.(c)|
|00003b50| 0f 0d 0a 00 14 6a 33 2d | 32 2d 34 39 61 2e 6d 14 |.....j3-|2-49a.m.|
|00003b60| 39 14 37 14 32 30 14 37 | 14 20 20 14 6a 33 2d 32 |9.7.20.7|. .j3-2|
|00003b70| 2d 34 39 62 2e 6d 14 33 | 31 14 37 14 32 30 14 37 |-49b.m.3|1.7.20.7|
|00003b80| 14 20 20 14 6a 33 2d 32 | 2d 34 39 63 2e 6d 14 35 |. .j3-2|-49c.m.5|
|00003b90| 33 14 37 14 32 30 14 37 | 14 20 20 0d 0a 00 0d 0a |3.7.20.7|. .....|
|00003ba0| 00 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0a 00 20 20 20 |........|..... |
|00003bb0| 20 20 20 20 20 20 49 6e | 74 65 72 63 65 70 74 73 | In|tercepts|
|00003bc0| 3a 20 28 30 2c 20 2d 33 | 29 20 20 20 49 6e 74 65 |: (0, -3|) Inte|
|00003bd0| 72 63 65 70 74 3a 20 28 | 33 2c 20 30 29 20 20 20 |rcept: (|3, 0) |
|00003be0| 20 20 49 6e 74 65 72 63 | 65 70 74 3a 20 28 33 2c | Interc|ept: (3,|
|00003bf0| 20 30 29 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 | 0)... | |
|00003c00| 20 20 20 20 20 20 20 20 | 20 20 20 28 33 2c 20 30 | | (3, 0|
|00003c10| 29 0d 0a 00 0d 0a 00 20 | 20 20 20 20 0e 33 2d 32 |)...... | .3-2|
|00003c20| 2d 34 39 64 0e 28 64 29 | 0f 20 4e 6f 6e 65 20 6f |-49d.(d)|. None o|
|00003c30| 66 20 74 68 65 73 65 0d | 0a 00 0d 0a 00 59 6f 75 |f these.|.....You|
|00003c40| 20 6d 61 79 20 77 61 6e | 74 20 74 6f 20 72 65 76 | may wan|t to rev|
|00003c50| 69 65 77 20 10 31 2d 31 | 2d 32 0e 69 31 2d 31 2d |iew .1-1|-2.i1-1-|
|00003c60| 32 0e 49 6e 74 65 67 72 | 61 74 65 64 20 45 78 61 |2.Integr|ated Exa|
|00003c70| 6d 70 6c 65 20 32 2e 0f | 0d 0a 00 53 65 63 74 69 |mple 2..|...Secti|
|00003c80| 6f 6e 20 31 2e 31 20 20 | 47 72 61 70 68 73 20 61 |on 1.1 |Graphs a|
|00003c90| 6e 64 20 47 72 61 70 68 | 69 6e 67 20 55 74 69 6c |nd Graph|ing Util|
|00003ca0| 69 74 69 65 73 0d 0b 00 | 31 32 2e 20 20 53 6b 65 |ities...|12. Ske|
|00003cb0| 74 63 68 20 74 68 65 20 | 67 72 61 70 68 20 6f 66 |tch the |graph of|
|00003cc0| 20 74 68 65 20 65 71 75 | 61 74 69 6f 6e 20 11 33 | the equ|ation .3|
|00003cd0| 79 20 11 31 3d 20 11 34 | 21 11 33 78 20 11 31 2d |y .1= .4|!.3x .1-|
|00003ce0| 20 32 7c 2e 20 20 49 64 | 65 6e 74 69 66 79 20 61 | 2|. Id|entify a|
|00003cf0| 6e 79 20 69 6e 74 65 72 | 63 65 70 74 73 20 0d 0a |ny inter|cepts ..|
|00003d00| 00 20 20 20 20 20 61 6e | 64 20 74 65 73 74 20 66 |. an|d test f|
|00003d10| 6f 72 20 73 79 6d 6d 65 | 74 72 79 2e 0d 0a 00 0d |or symme|try.....|
|00003d20| 0a 00 20 20 20 20 20 0e | 33 2d 32 2d 35 33 61 0e |.. .|3-2-53a.|
|00003d30| 28 61 29 0f 20 20 20 20 | 20 20 20 20 20 20 20 20 |(a). | |
|00003d40| 20 20 20 20 20 20 20 0e | 33 2d 32 2d 35 33 62 0e | .|3-2-53b.|
|00003d50| 28 62 29 0f 20 20 20 20 | 20 20 20 20 20 20 20 20 |(b). | |
|00003d60| 20 20 20 20 20 20 20 0e | 33 2d 32 2d 35 33 63 0e | .|3-2-53c.|
|00003d70| 28 63 29 0f 0d 0a 00 14 | 6a 33 2d 32 2d 35 33 61 |(c).....|j3-2-53a|
|00003d80| 2e 6d 14 39 14 37 14 32 | 30 14 37 14 20 20 14 6a |.m.9.7.2|0.7. .j|
|00003d90| 33 2d 32 2d 35 33 62 2e | 6d 14 33 31 14 37 14 32 |3-2-53b.|m.31.7.2|
|00003da0| 30 14 37 14 20 20 14 6a | 33 2d 32 2d 35 33 63 2e |0.7. .j|3-2-53c.|
|00003db0| 6d 14 35 33 14 37 14 32 | 30 14 37 14 20 20 0d 0a |m.53.7.2|0.7. ..|
|00003dc0| 00 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |........|........|
|00003dd0| 20 20 20 20 20 20 20 20 | 20 49 6e 74 65 72 63 65 | | Interce|
|00003de0| 70 74 73 3a 20 28 30 2c | 20 32 29 20 20 20 20 49 |pts: (0,| 2) I|
|00003df0| 6e 74 65 72 63 65 70 74 | 73 3a 20 28 30 2c 20 2d |ntercept|s: (0, -|
|00003e00| 32 29 20 20 20 49 6e 74 | 65 72 63 65 70 74 73 3a |2) Int|ercepts:|
|00003e10| 20 28 30 2c 20 2d 32 29 | 0d 0a 00 20 20 20 20 20 | (0, -2)|... |
|00003e20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003e30| 28 32 2c 20 30 29 20 20 | 20 20 20 20 20 20 20 20 |(2, 0) | |
|00003e40| 20 20 20 20 20 20 28 32 | 2c 20 30 29 20 20 20 20 | (2|, 0) |
|00003e50| 20 20 20 20 28 32 2c 20 | 30 29 2c 20 28 2d 32 2c | (2, |0), (-2,|
|00003e60| 20 30 29 0d 0a 00 0d 0a | 00 20 20 20 20 20 0e 33 | 0).....|. .3|
|00003e70| 2d 32 2d 35 33 64 0e 28 | 64 29 0f 20 4e 6f 6e 65 |-2-53d.(|d). None|
|00003e80| 20 6f 66 20 74 68 65 73 | 65 0d 0a 00 0d 0a 00 59 | of thes|e......Y|
|00003e90| 6f 75 20 6d 61 79 20 77 | 61 6e 74 20 74 6f 20 72 |ou may w|ant to r|
|00003ea0| 65 76 69 65 77 20 10 31 | 2d 31 2d 32 0e 69 31 2d |eview .1|-1-2.i1-|
|00003eb0| 31 2d 33 0e 49 6e 74 65 | 67 72 61 74 65 64 20 45 |1-3.Inte|grated E|
|00003ec0| 78 61 6d 70 6c 65 20 33 | 2e 0f 0d 0a 00 53 65 63 |xample 3|.....Sec|
|00003ed0| 74 69 6f 6e 20 31 2e 31 | 20 20 47 72 61 70 68 73 |tion 1.1| Graphs|
|00003ee0| 20 61 6e 64 20 47 72 61 | 70 68 69 6e 67 20 55 74 | and Gra|phing Ut|
|00003ef0| 69 6c 69 74 69 65 73 20 | 20 20 20 20 20 20 20 20 |ilities | |
|00003f00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003f10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003f20| 20 20 11 32 32 0d 0b 00 | 11 31 31 33 2e 20 20 53 | .22...|.113. S|
|00003f30| 6b 65 74 63 68 20 74 68 | 65 20 67 72 61 70 68 20 |ketch th|e graph |
|00003f40| 6f 66 20 74 68 65 20 65 | 71 75 61 74 69 6f 6e 20 |of the e|quation |
|00003f50| 11 33 78 20 11 31 3d 20 | 11 33 79 20 20 11 31 2d |.3x .1= |.3y .1-|
|00003f60| 20 31 2e 20 20 49 64 65 | 6e 74 69 66 79 20 61 6e | 1. Ide|ntify an|
|00003f70| 79 20 69 6e 74 65 72 63 | 65 70 74 73 20 61 6e 64 |y interc|epts and|
|00003f80| 0d 0a 00 20 20 20 20 20 | 74 65 73 74 20 66 6f 72 |... |test for|
|00003f90| 20 73 79 6d 6d 65 74 72 | 79 2e 0d 0a 00 0d 0a 00 | symmetr|y.......|
|00003fa0| 20 20 20 20 20 0e 33 2d | 32 2d 35 35 61 0e 28 61 | .3-|2-55a.(a|
|00003fb0| 29 0f 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |). | |
|00003fc0| 20 20 20 20 20 0e 33 2d | 32 2d 35 35 62 0e 28 62 | .3-|2-55b.(b|
|00003fd0| 29 0f 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |). | |
|00003fe0| 20 20 20 20 20 0e 33 2d | 32 2d 35 35 63 0e 28 63 | .3-|2-55c.(c|
|00003ff0| 29 0f 0d 0a 00 14 6a 33 | 2d 32 2d 35 35 61 2e 6d |).....j3|-2-55a.m|
|00004000| 14 39 14 37 14 32 30 14 | 37 14 20 20 14 6a 33 2d |.9.7.20.|7. .j3-|
|00004010| 32 2d 35 35 62 2e 6d 14 | 33 31 14 37 14 32 30 14 |2-55b.m.|31.7.20.|
|00004020| 37 14 20 20 14 6a 33 2d | 32 2d 35 35 63 2e 6d 14 |7. .j3-|2-55c.m.|
|00004030| 35 33 14 37 14 32 30 14 | 37 14 20 20 0d 0a 00 0d |53.7.20.|7. ....|
|00004040| 0a 00 0d 0a 00 0d 0a 00 | 0d 0a 00 0d 0a 00 20 20 |........|...... |
|00004050| 20 20 20 20 20 20 20 49 | 6e 74 65 72 63 65 70 74 | I|ntercept|
|00004060| 73 3a 20 28 2d 31 2c 20 | 30 29 20 20 20 49 6e 74 |s: (-1, |0) Int|
|00004070| 65 72 63 65 70 74 73 3a | 20 28 30 2c 20 31 29 20 |ercepts:| (0, 1) |
|00004080| 20 20 20 49 6e 74 65 72 | 63 65 70 74 3a 20 28 30 | Inter|cept: (0|
|00004090| 2c 20 31 29 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |, 1)... | |
|000040a0| 20 20 20 20 28 30 2c 20 | 31 29 2c 20 28 30 2c 20 | (0, |1), (0, |
|000040b0| 2d 31 29 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |-1) | |
|000040c0| 20 28 2d 31 2c 20 30 29 | 0d 0a 00 0d 0a 00 20 20 | (-1, 0)|...... |
|000040d0| 20 20 20 0e 33 2d 32 2d | 35 35 64 0e 28 64 29 0f | .3-2-|55d.(d).|
|000040e0| 20 4e 6f 6e 65 20 6f 66 | 20 74 68 65 73 65 0d 0a | None of| these..|
|000040f0| 00 0d 0a 00 59 6f 75 20 | 6d 61 79 20 77 61 6e 74 |....You |may want|
|00004100| 20 74 6f 20 72 65 76 69 | 65 77 20 10 31 2d 31 2d | to revi|ew .1-1-|
|00004110| 32 0e 69 31 2d 31 2d 34 | 0e 47 75 69 64 65 64 20 |2.i1-1-4|.Guided |
|00004120| 45 78 61 6d 70 6c 65 20 | 34 2e 0f 0d 0a 00 53 65 |Example |4.....Se|
|00004130| 63 74 69 6f 6e 20 31 2e | 31 20 20 47 72 61 70 68 |ction 1.|1 Graph|
|00004140| 73 20 61 6e 64 20 47 72 | 61 70 68 69 6e 67 20 55 |s and Gr|aphing U|
|00004150| 74 69 6c 69 74 69 65 73 | 0d 0b 00 20 32 2e 20 20 |tilities|... 2. |
|00004160| 46 69 6e 64 20 74 68 65 | 20 11 33 78 11 31 2d 20 |Find the| .3x.1- |
|00004170| 61 6e 64 20 11 33 79 11 | 31 2d 69 6e 74 65 72 63 |and .3y.|1-interc|
|00004180| 65 70 74 73 20 6f 66 20 | 74 68 65 20 67 72 61 70 |epts of |the grap|
|00004190| 68 20 6f 66 20 74 68 65 | 20 65 71 75 61 74 69 6f |h of the| equatio|
|000041a0| 6e 20 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 11 |n ... | .|
|000041b0| 32 32 0d 0b 00 20 20 20 | 20 20 11 33 79 20 11 31 |22... | .3y .1|
|000041c0| 3d 20 11 33 78 20 20 11 | 31 2b 20 34 11 33 78 20 |= .3x .|1+ 4.3x |
|000041d0| 11 31 2d 20 35 2e 0d 0a | 00 0d 0a 00 20 20 20 20 |.1- 5...|.... |
|000041e0| 20 0e 33 2d 32 2d 31 35 | 61 0e 28 61 29 0f 20 11 | .3-2-15|a.(a). .|
|000041f0| 33 78 11 31 2d 69 6e 74 | 65 72 63 65 70 74 73 3a |3x.1-int|ercepts:|
|00004200| 20 28 35 2c 20 30 29 2c | 20 28 2d 31 2c 20 30 29 | (5, 0),| (-1, 0)|
|00004210| 20 20 20 20 20 11 33 79 | 11 31 2d 69 6e 74 65 72 | .3y|.1-inter|
|00004220| 63 65 70 74 3a 20 28 30 | 2c 20 2d 35 29 0d 0a 00 |cept: (0|, -5)...|
|00004230| 0d 0b 00 20 20 20 20 20 | 0e 33 2d 32 2d 31 35 62 |... |.3-2-15b|
|00004240| 0e 28 62 29 0f 20 11 33 | 78 11 31 2d 69 6e 74 65 |.(b). .3|x.1-inte|
|00004250| 72 63 65 70 74 3a 20 28 | 30 2c 20 2d 35 29 20 20 |rcept: (|0, -5) |
|00004260| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 79 11 | | .3y.|
|00004270| 31 2d 69 6e 74 65 72 63 | 65 70 74 73 3a 20 28 35 |1-interc|epts: (5|
|00004280| 2c 20 30 29 2c 20 28 2d | 31 2c 20 30 29 0d 0a 00 |, 0), (-|1, 0)...|
|00004290| 0d 0b 00 20 20 20 20 20 | 0e 33 2d 32 2d 31 35 63 |... |.3-2-15c|
|000042a0| 0e 28 63 29 0f 20 11 33 | 78 11 31 2d 69 6e 74 65 |.(c). .3|x.1-inte|
|000042b0| 72 63 65 70 74 73 3a 20 | 28 30 2c 20 2d 35 29 2c |rcepts: |(0, -5),|
|000042c0| 20 28 30 2c 20 31 29 20 | 20 20 20 20 11 33 79 11 | (0, 1) | .3y.|
|000042d0| 31 2d 69 6e 74 65 72 63 | 65 70 74 3a 20 28 2d 35 |1-interc|ept: (-5|
|000042e0| 2c 20 30 29 0d 0a 00 0d | 0b 00 20 20 20 20 20 0e |, 0)....|.. .|
|000042f0| 33 2d 32 2d 31 35 64 0e | 28 64 29 0f 20 11 33 78 |3-2-15d.|(d). .3x|
|00004300| 11 31 2d 69 6e 74 65 72 | 63 65 70 74 73 3a 20 28 |.1-inter|cepts: (|
|00004310| 2d 35 2c 20 30 29 2c 20 | 28 31 2c 20 30 29 20 20 |-5, 0), |(1, 0) |
|00004320| 20 20 20 11 33 79 11 31 | 2d 69 6e 74 65 72 63 65 | .3y.1|-interce|
|00004330| 70 74 3a 20 28 30 2c 20 | 2d 35 29 0d 0a 00 0d 0a |pt: (0, |-5).....|
|00004340| 00 59 6f 75 20 6d 61 79 | 20 77 61 6e 74 20 74 6f |.You may| want to|
|00004350| 20 72 65 76 69 65 77 20 | 10 31 2d 31 2d 32 0e 65 | review |.1-1-2.e|
|00004360| 31 2d 31 2d 32 0e 47 75 | 69 64 65 64 20 45 78 61 |1-1-2.Gu|ided Exa|
|00004370| 6d 70 6c 65 20 32 2e 0f | 0d 0a 00 53 65 63 74 69 |mple 2..|...Secti|
|00004380| 6f 6e 20 31 2e 31 20 20 | 47 72 61 70 68 73 20 61 |on 1.1 |Graphs a|
|00004390| 6e 64 20 47 72 61 70 68 | 69 6e 67 20 55 74 69 6c |nd Graph|ing Util|
|000043a0| 69 74 69 65 73 0d 0b 00 | 20 33 2e 20 20 46 69 6e |ities...| 3. Fin|
|000043b0| 64 20 74 68 65 20 11 33 | 78 11 31 2d 20 61 6e 64 |d the .3|x.1- and|
|000043c0| 20 11 33 79 11 31 2d 69 | 6e 74 65 72 63 65 70 74 | .3y.1-i|ntercept|
|000043d0| 73 20 6f 66 20 74 68 65 | 20 67 72 61 70 68 20 6f |s of the| graph o|
|000043e0| 66 20 74 68 65 20 65 71 | 75 61 74 69 6f 6e 20 0d |f the eq|uation .|
|000043f0| 0a 00 20 20 20 20 20 11 | 33 78 79 20 11 31 2b 20 |.. .|3xy .1+ |
|00004400| 32 11 33 79 20 11 31 2d | 20 11 33 78 20 11 31 2d |2.3y .1-| .3x .1-|
|00004410| 20 33 20 3d 20 30 2e 0d | 0a 00 20 20 20 20 20 0d | 3 = 0..|.. .|
|00004420| 0a 00 20 20 20 20 20 0e | 33 2d 32 2d 31 39 61 0e |.. .|3-2-19a.|
|00004430| 28 61 29 0f 20 11 33 78 | 11 31 2d 69 6e 74 65 72 |(a). .3x|.1-inter|
|00004440| 63 65 70 74 3a 20 28 2d | 33 2c 20 30 29 20 20 20 |cept: (-|3, 0) |
|00004450| 20 20 20 20 20 20 20 20 | 20 20 11 33 79 11 31 2d | | .3y.1-|
|00004460| 69 6e 74 65 72 63 65 70 | 74 3a 20 28 30 2c 20 33 |intercep|t: (0, 3|
|00004470| 29 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |)...... | |
|00004480| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 33 0d | | 3.|
|00004490| 0b 00 20 20 20 20 20 0e | 33 2d 32 2d 31 39 62 0e |.. .|3-2-19b.|
|000044a0| 28 62 29 0f 20 11 33 78 | 11 31 2d 69 6e 74 65 72 |(b). .3x|.1-inter|
|000044b0| 63 65 70 74 3a 20 28 11 | 34 32 11 31 2c 20 30 29 |cept: (.|42.1, 0)|
|000044c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 | | .3|
|000044d0| 79 11 31 2d 69 6e 74 65 | 72 63 65 70 74 3a 20 28 |y.1-inte|rcept: (|
|000044e0| 30 2c 20 33 29 0d 0b 00 | 20 20 20 20 20 20 20 20 |0, 3)...| |
|000044f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 32 | | 2|
|00004500| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |...... | |
|00004510| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004520| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004530| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004540| 20 33 0d 0b 00 20 20 20 | 20 20 0e 33 2d 32 2d 31 | 3... | .3-2-1|
|00004550| 39 63 0e 28 63 29 0f 20 | 11 33 78 11 31 2d 69 6e |9c.(c). |.3x.1-in|
|00004560| 74 65 72 63 65 70 74 3a | 20 28 2d 33 2c 20 30 29 |tercept:| (-3, 0)|
|00004570| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 79 | | .3y|
|00004580| 11 31 2d 69 6e 74 65 72 | 63 65 70 74 3a 20 28 30 |.1-inter|cept: (0|
|00004590| 2c 20 11 34 32 11 31 29 | 0d 0b 00 20 20 20 20 20 |, .42.1)|... |
|000045a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000045b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000045c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000045d0| 20 20 20 20 20 20 32 0d | 0a 00 0d 0b 00 20 20 20 | 2.|..... |
|000045e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000045f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004600| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004610| 20 20 20 20 20 20 20 20 | 20 33 0d 0b 00 20 20 20 | | 3... |
|00004620| 20 20 0e 33 2d 32 2d 31 | 39 64 0e 28 64 29 0f 20 | .3-2-1|9d.(d). |
|00004630| 11 33 78 11 31 2d 69 6e | 74 65 72 63 65 70 74 3a |.3x.1-in|tercept:|
|00004640| 20 28 33 2c 20 30 29 20 | 20 20 20 20 20 20 20 20 | (3, 0) | |
|00004650| 20 20 20 20 20 11 33 79 | 11 31 2d 69 6e 74 65 72 | .3y|.1-inter|
|00004660| 63 65 70 74 3a 20 28 30 | 2c 20 2d 11 34 32 11 31 |cept: (0|, -.42.1|
|00004670| 29 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |)... | |
|00004680| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004690| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000046a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000046b0| 32 0d 0a 00 0d 0a 00 59 | 6f 75 20 6d 61 79 20 77 |2......Y|ou may w|
|000046c0| 61 6e 74 20 74 6f 20 72 | 65 76 69 65 77 20 10 31 |ant to r|eview .1|
|000046d0| 2d 31 2d 32 0e 65 31 2d | 31 2d 32 0e 47 75 69 64 |-1-2.e1-|1-2.Guid|
|000046e0| 65 64 20 45 78 61 6d 70 | 6c 65 20 32 2e 0f 0d 0a |ed Examp|le 2....|
|000046f0| 00 53 65 63 74 69 6f 6e | 20 31 2e 31 20 20 47 72 |.Section| 1.1 Gr|
|00004700| 61 70 68 73 20 61 6e 64 | 20 47 72 61 70 68 69 6e |aphs and| Graphin|
|00004710| 67 20 55 74 69 6c 69 74 | 69 65 73 0d 0b 00 20 34 |g Utilit|ies... 4|
|00004720| 2e 20 20 43 68 65 63 6b | 20 66 6f 72 20 73 79 6d |. Check| for sym|
|00004730| 6d 65 74 72 79 20 77 69 | 74 68 20 72 65 73 70 65 |metry wi|th respe|
|00004740| 63 74 20 74 6f 20 62 6f | 74 68 20 61 78 65 73 20 |ct to bo|th axes |
|00004750| 61 6e 64 20 74 68 65 20 | 6f 72 69 67 69 6e 20 66 |and the |origin f|
|00004760| 6f 72 20 74 68 65 20 67 | 72 61 70 68 0d 0a 00 20 |or the g|raph... |
|00004770| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004780| 20 20 20 20 20 20 20 20 | 20 20 11 32 32 0d 0b 00 | | .22...|
|00004790| 20 20 20 20 20 11 31 6f | 66 20 74 68 65 20 65 71 | .1o|f the eq|
|000047a0| 75 61 74 69 6f 6e 20 2d | 11 33 78 20 11 31 2b 20 |uation -|.3x .1+ |
|000047b0| 11 33 79 20 20 11 31 3d | 20 30 2e 0d 0a 00 0d 0a |.3y .1=| 0......|
|000047c0| 00 20 20 20 20 20 0e 33 | 2d 32 2d 32 33 61 0e 28 |. .3|-2-23a.(|
|000047d0| 61 29 0f 20 11 33 79 11 | 31 2d 61 78 69 73 20 73 |a). .3y.|1-axis s|
|000047e0| 79 6d 6d 65 74 72 79 20 | 20 20 20 20 20 20 20 20 |ymmetry | |
|000047f0| 20 20 20 20 20 0e 33 2d | 32 2d 32 33 62 0e 28 62 | .3-|2-23b.(b|
|00004800| 29 0f 20 11 33 78 11 31 | 2d 61 78 69 73 20 73 79 |). .3x.1|-axis sy|
|00004810| 6d 6d 65 74 72 79 0d 0a | 00 0d 0b 00 20 20 20 20 |mmetry..|.... |
|00004820| 20 0e 33 2d 32 2d 32 33 | 63 0e 28 63 29 0f 20 4f | .3-2-23|c.(c). O|
|00004830| 72 69 67 69 6e 20 73 79 | 6d 6d 65 74 72 79 20 20 |rigin sy|mmetry |
|00004840| 20 20 20 20 20 20 20 20 | 20 20 20 20 0e 33 2d 32 | | .3-2|
|00004850| 2d 32 33 64 0e 28 64 29 | 0f 20 4e 6f 20 73 79 6d |-23d.(d)|. No sym|
|00004860| 6d 65 74 72 79 0d 0a 00 | 0d 0a 00 59 6f 75 20 6d |metry...|...You m|
|00004870| 61 79 20 77 61 6e 74 20 | 74 6f 20 72 65 76 69 65 |ay want |to revie|
|00004880| 77 20 10 31 2d 31 2d 32 | 0e 65 31 2d 31 2d 33 0e |w .1-1-2|.e1-1-3.|
|00004890| 47 75 69 64 65 64 20 45 | 78 61 6d 70 6c 65 20 33 |Guided E|xample 3|
|000048a0| 2e 0f 0d 0a 00 53 65 63 | 74 69 6f 6e 20 31 2e 31 |.....Sec|tion 1.1|
|000048b0| 20 20 47 72 61 70 68 73 | 20 61 6e 64 20 47 72 61 | Graphs| and Gra|
|000048c0| 70 68 69 6e 67 20 55 74 | 69 6c 69 74 69 65 73 0d |phing Ut|ilities.|
|000048d0| 0b 00 20 35 2e 20 20 43 | 68 65 63 6b 20 66 6f 72 |.. 5. C|heck for|
|000048e0| 20 73 79 6d 6d 65 74 72 | 79 20 77 69 74 68 20 72 | symmetr|y with r|
|000048f0| 65 73 70 65 63 74 20 74 | 6f 20 62 6f 74 68 20 61 |espect t|o both a|
|00004900| 78 65 73 20 61 6e 64 20 | 74 68 65 20 6f 72 69 67 |xes and |the orig|
|00004910| 69 6e 20 66 6f 72 20 74 | 68 65 20 67 72 61 70 68 |in for t|he graph|
|00004920| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00004930| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 32 | | .22|
|00004940| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00004950| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 78 20 | | .3x |
|00004960| 20 11 31 2d 20 33 0d 0b | 00 20 20 20 20 20 6f 66 | .1- 3..|. of|
|00004970| 20 74 68 65 20 65 71 75 | 61 74 69 6f 6e 20 11 33 | the equ|ation .3|
|00004980| 79 20 11 31 3d 20 11 34 | 32 32 32 32 32 32 20 11 |y .1= .4|222222 .|
|00004990| 31 2e 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |1.... | |
|000049a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000049b0| 32 11 33 78 0d 0a 00 0d | 0a 00 20 20 20 20 20 11 |2.3x....|.. .|
|000049c0| 31 0e 33 2d 32 2d 32 37 | 61 0e 28 61 29 0f 20 11 |1.3-2-27|a.(a). .|
|000049d0| 33 79 11 31 2d 61 78 69 | 73 20 73 79 6d 6d 65 74 |3y.1-axi|s symmet|
|000049e0| 72 79 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |ry | |
|000049f0| 0e 33 2d 32 2d 32 37 62 | 0e 28 62 29 0f 20 11 33 |.3-2-27b|.(b). .3|
|00004a00| 78 11 31 2d 61 78 69 73 | 20 73 79 6d 6d 65 74 72 |x.1-axis| symmetr|
|00004a10| 79 0d 0a 00 0d 0b 00 20 | 20 20 20 20 0e 33 2d 32 |y...... | .3-2|
|00004a20| 2d 32 37 63 0e 28 63 29 | 0f 20 4f 72 69 67 69 6e |-27c.(c)|. Origin|
|00004a30| 20 73 79 6d 6d 65 74 72 | 79 20 20 20 20 20 20 20 | symmetr|y |
|00004a40| 20 20 20 20 20 20 20 0e | 33 2d 32 2d 32 37 64 0e | .|3-2-27d.|
|00004a50| 28 64 29 0f 20 4e 6f 20 | 73 79 6d 6d 65 74 72 79 |(d). No |symmetry|
|00004a60| 0d 0a 00 0d 0a 00 59 6f | 75 20 6d 61 79 20 77 61 |......Yo|u may wa|
|00004a70| 6e 74 20 74 6f 20 72 65 | 76 69 65 77 20 10 31 2d |nt to re|view .1-|
|00004a80| 31 2d 32 0e 65 31 2d 31 | 2d 33 0e 47 75 69 64 65 |1-2.e1-1|-3.Guide|
|00004a90| 64 20 45 78 61 6d 70 6c | 65 20 33 2e 0f 0d 0a 00 |d Exampl|e 3.....|
|00004aa0| 53 65 63 74 69 6f 6e 20 | 31 2e 31 20 20 47 72 61 |Section |1.1 Gra|
|00004ab0| 70 68 73 20 61 6e 64 20 | 47 72 61 70 68 69 6e 67 |phs and |Graphing|
|00004ac0| 20 55 74 69 6c 69 74 69 | 65 73 0d 0b 00 20 36 2e | Utiliti|es... 6.|
|00004ad0| 20 20 46 69 6e 64 20 74 | 68 65 20 73 74 61 6e 64 | Find t|he stand|
|00004ae0| 61 72 64 20 66 6f 72 6d | 20 6f 66 20 74 68 65 20 |ard form| of the |
|00004af0| 65 71 75 61 74 69 6f 6e | 20 6f 66 20 74 68 65 20 |equation| of the |
|00004b00| 63 69 72 63 6c 65 20 77 | 69 74 68 20 63 65 6e 74 |circle w|ith cent|
|00004b10| 65 72 20 28 2d 33 2c 20 | 34 29 0d 0a 00 20 20 20 |er (-3, |4)... |
|00004b20| 20 20 61 6e 64 20 73 6f | 6c 75 74 69 6f 6e 20 70 | and so|lution p|
|00004b30| 6f 69 6e 74 20 28 30 2c | 20 30 29 2e 0d 0a 00 0d |oint (0,| 0).....|
|00004b40| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00004b50| 20 20 11 32 32 20 20 20 | 20 20 20 20 20 20 20 32 | .22 | 2|
|00004b60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004b70| 20 20 20 20 20 32 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00004b80| 32 20 20 20 20 11 34 44 | 32 0d 0b 00 20 20 20 20 |2 .4D|2... |
|00004b90| 20 11 31 0e 33 2d 32 2d | 36 33 61 0e 28 61 29 0f | .1.3-2-|63a.(a).|
|00004ba0| 20 28 11 33 78 20 11 31 | 2d 20 33 29 20 20 2b 20 | (.3x .1|- 3) + |
|00004bb0| 28 11 33 79 20 11 31 2b | 20 34 29 20 20 3d 20 33 |(.3y .1+| 4) = 3|
|00004bc0| 20 20 20 20 20 20 0e 33 | 2d 32 2d 36 33 62 0e 28 | .3|-2-63b.(|
|00004bd0| 62 29 0f 20 28 11 33 78 | 20 11 31 2d 20 33 29 20 |b). (.3x| .1- 3) |
|00004be0| 20 2b 20 28 11 33 79 20 | 11 31 2d 20 34 29 20 20 | + (.3y |.1- 4) |
|00004bf0| 3d 20 11 34 53 20 11 31 | 35 0d 0a 00 0d 0b 00 20 |= .4S .1|5...... |
|00004c00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00004c10| 32 32 20 20 20 20 20 20 | 20 20 20 20 32 20 20 20 |22 | 2 |
|00004c20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004c30| 20 20 32 20 20 20 20 20 | 20 20 20 20 20 32 0d 0b | 2 | 2..|
|00004c40| 00 20 20 20 20 20 11 31 | 0e 33 2d 32 2d 36 33 63 |. .1|.3-2-63c|
|00004c50| 0e 28 63 29 0f 20 28 11 | 33 78 20 11 31 2b 20 33 |.(c). (.|3x .1+ 3|
|00004c60| 29 20 20 2b 20 28 11 33 | 79 20 11 31 2d 20 34 29 |) + (.3|y .1- 4)|
|00004c70| 20 20 3d 20 32 35 20 20 | 20 20 20 0e 33 2d 32 2d | = 25 | .3-2-|
|00004c80| 36 33 64 0e 28 64 29 0f | 20 28 11 33 78 20 11 31 |63d.(d).| (.3x .1|
|00004c90| 2b 20 33 29 20 20 2b 20 | 28 11 33 79 20 11 31 2b |+ 3) + |(.3y .1+|
|00004ca0| 20 34 29 20 20 3d 20 35 | 0d 0a 00 0d 0a 00 59 6f | 4) = 5|......Yo|
|00004cb0| 75 20 6d 61 79 20 77 61 | 6e 74 20 74 6f 20 72 65 |u may wa|nt to re|
|00004cc0| 76 69 65 77 20 10 31 2d | 31 2d 32 0e 65 31 2d 31 |view .1-|1-2.e1-1|
|00004cd0| 2d 34 0e 47 75 69 64 65 | 64 20 45 78 61 6d 70 6c |-4.Guide|d Exampl|
|00004ce0| 65 20 34 2e 0f 0d 0a 00 | 53 65 63 74 69 6f 6e 20 |e 4.....|Section |
|00004cf0| 31 2e 31 20 20 47 72 61 | 70 68 73 20 61 6e 64 20 |1.1 Gra|phs and |
|00004d00| 47 72 61 70 68 69 6e 67 | 20 55 74 69 6c 69 74 69 |Graphing| Utiliti|
|00004d10| 65 73 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |es | |
|00004d20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004d30| 20 20 20 20 20 20 20 20 | 11 32 32 20 20 20 20 20 | |.22 |
|00004d40| 20 32 0d 0b 00 20 11 31 | 37 2e 20 20 46 69 6e 64 | 2... .1|7. Find|
|00004d50| 20 74 68 65 20 63 65 6e | 74 65 72 20 61 6e 64 20 | the cen|ter and |
|00004d60| 72 61 64 69 75 73 20 6f | 66 20 31 36 11 33 78 20 |radius o|f 16.3x |
|00004d70| 20 11 31 2b 20 31 36 11 | 33 79 20 20 11 31 2b 20 | .1+ 16.|3y .1+ |
|00004d80| 31 36 11 33 78 20 11 31 | 2b 20 34 30 11 33 79 20 |16.3x .1|+ 40.3y |
|00004d90| 11 31 2d 20 37 20 3d 20 | 30 2c 20 61 6e 64 20 73 |.1- 7 = |0, and s|
|00004da0| 6b 65 74 63 68 0d 0a 00 | 20 20 20 20 20 74 68 65 |ketch...| the|
|00004db0| 20 67 72 61 70 68 20 6f | 66 20 74 68 65 20 65 71 | graph o|f the eq|
|00004dc0| 75 61 74 69 6f 6e 2e 0d | 0a 00 0d 0a 00 20 20 20 |uation..|..... |
|00004dd0| 20 20 0e 33 2d 32 2d 37 | 33 61 0e 28 61 29 0f 20 | .3-2-7|3a.(a). |
|00004de0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004df0| 20 20 0e 33 2d 32 2d 37 | 33 62 0e 28 62 29 0f 20 | .3-2-7|3b.(b). |
|00004e00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004e10| 20 20 0e 33 2d 32 2d 37 | 33 63 0e 28 63 29 0f 0d | .3-2-7|3c.(c)..|
|00004e20| 0a 00 14 6a 33 2d 32 2d | 37 33 61 2e 6d 14 39 14 |...j3-2-|73a.m.9.|
|00004e30| 37 14 32 30 14 37 14 20 | 20 14 6a 33 2d 32 2d 37 |7.20.7. | .j3-2-7|
|00004e40| 33 62 2e 6d 14 33 31 14 | 37 14 32 30 14 37 14 20 |3b.m.31.|7.20.7. |
|00004e50| 20 14 6a 33 2d 32 2d 37 | 33 63 2e 6d 14 35 33 14 | .j3-2-7|3c.m.53.|
|00004e60| 37 14 32 30 14 37 14 20 | 20 0d 0a 00 0d 0a 00 0d |7.20.7. | .......|
|00004e70| 0a 00 0d 0a 00 0d 0a 00 | 0d 0a 00 20 20 20 20 20 |........|... |
|00004e80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 31 20 20 | | 1 |
|00004e90| 20 35 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 5 | |
|00004ea0| 20 20 20 20 31 20 20 20 | 20 35 20 20 20 20 20 20 | 1 | 5 |
|00004eb0| 20 20 20 20 20 20 20 20 | 20 20 31 20 20 20 20 35 | | 1 5|
|00004ec0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 43 65 6e 74 |... | Cent|
|00004ed0| 65 72 3a 20 28 11 34 32 | 20 11 31 2c 20 11 34 32 |er: (.42| .1, .42|
|00004ee0| 11 31 29 20 20 20 20 20 | 20 20 43 65 6e 74 65 72 |.1) | Center|
|00004ef0| 3a 20 28 2d 11 34 32 20 | 11 31 2c 20 2d 11 34 32 |: (-.42 |.1, -.42|
|00004f00| 11 31 29 20 20 20 20 20 | 43 65 6e 74 65 72 3a 20 |.1) |Center: |
|00004f10| 28 2d 11 34 32 20 11 31 | 2c 20 2d 11 34 32 11 31 |(-.42 .1|, -.42.1|
|00004f20| 29 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |)... | |
|00004f30| 20 20 20 20 20 20 32 20 | 20 20 34 20 20 20 20 20 | 2 | 4 |
|00004f40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 32 20 20 | | 2 |
|00004f50| 20 20 34 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 4 | |
|00004f60| 20 20 20 32 20 20 20 20 | 34 0d 0a 00 20 20 20 20 | 2 |4... |
|00004f70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 39 20 20 | | 9 |
|00004f80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004f90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00004fa0| 20 20 20 20 20 20 20 20 | 20 33 0d 0b 00 20 20 20 | | 3... |
|00004fb0| 20 20 20 20 20 20 52 61 | 64 69 75 73 3a 20 11 34 | Ra|dius: .4|
|00004fc0| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 |2 | .1|
|00004fd0| 52 61 64 69 75 73 3a 20 | 33 20 20 20 20 20 20 20 |Radius: |3 |
|00004fe0| 20 20 20 20 20 20 52 61 | 64 69 75 73 3a 20 11 34 | Ra|dius: .4|
|00004ff0| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00005000| 20 20 20 20 20 11 31 34 | 20 20 20 20 20 20 20 20 | .14| |
|00005010| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005020| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005030| 20 20 20 32 0d 0a 00 0d | 0a 00 20 20 20 20 20 0e | 2....|.. .|
|00005040| 33 2d 32 2d 37 33 64 0e | 28 64 29 0f 20 4e 6f 6e |3-2-73d.|(d). Non|
|00005050| 65 20 6f 66 20 74 68 65 | 73 65 0d 0a 00 0d 0a 00 |e of the|se......|
|00005060| 59 6f 75 20 6d 61 79 20 | 77 61 6e 74 20 74 6f 20 |You may |want to |
|00005070| 72 65 76 69 65 77 20 10 | 31 2d 31 2d 32 0e 65 31 |review .|1-1-2.e1|
|00005080| 2d 31 2d 35 0e 47 75 69 | 64 65 64 20 45 78 61 6d |-1-5.Gui|ded Exam|
|00005090| 70 6c 65 20 35 2e 0f 0d | 0a 00 53 65 63 74 69 6f |ple 5...|..Sectio|
|000050a0| 6e 20 31 2e 31 20 20 47 | 72 61 70 68 73 20 61 6e |n 1.1 G|raphs an|
|000050b0| 64 20 47 72 61 70 68 69 | 6e 67 20 55 74 69 6c 69 |d Graphi|ng Utili|
|000050c0| 74 69 65 73 0d 0b 00 20 | 38 2e 20 20 53 6b 65 74 |ties... |8. Sket|
|000050d0| 63 68 20 74 68 65 20 67 | 72 61 70 68 20 6f 66 20 |ch the g|raph of |
|000050e0| 74 68 65 20 65 71 75 61 | 74 69 6f 6e 20 11 33 79 |the equa|tion .3y|
|000050f0| 20 11 31 3d 20 2d 33 11 | 33 78 20 11 31 2b 20 32 | .1= -3.|3x .1+ 2|
|00005100| 2e 20 20 49 64 65 6e 74 | 69 66 79 20 61 6e 79 20 |. Ident|ify any |
|00005110| 69 6e 74 65 72 63 65 70 | 74 73 20 0d 0a 00 20 20 |intercep|ts ... |
|00005120| 20 20 20 61 6e 64 20 74 | 65 73 74 20 66 6f 72 20 | and t|est for |
|00005130| 73 79 6d 6d 65 74 72 79 | 2e 0d 0a 00 0d 0a 00 20 |symmetry|....... |
|00005140| 20 20 20 20 0e 33 2d 32 | 2d 33 39 61 0e 28 61 29 | .3-2|-39a.(a)|
|00005150| 0f 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00005160| 20 20 20 20 0e 33 2d 32 | 2d 33 39 62 0e 28 62 29 | .3-2|-39b.(b)|
|00005170| 0f 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00005180| 20 20 20 20 0e 33 2d 32 | 2d 33 39 63 0e 28 63 29 | .3-2|-39c.(c)|
|00005190| 0f 0d 0a 00 14 6a 33 2d | 32 2d 33 39 61 2e 6d 14 |.....j3-|2-39a.m.|
|000051a0| 39 14 37 14 32 30 14 37 | 14 20 20 14 6a 33 2d 32 |9.7.20.7|. .j3-2|
|000051b0| 2d 33 39 62 2e 6d 14 33 | 31 14 37 14 32 30 14 37 |-39b.m.3|1.7.20.7|
|000051c0| 14 20 20 14 6a 33 2d 32 | 2d 33 39 63 2e 6d 14 35 |. .j3-2|-39c.m.5|
|000051d0| 33 14 37 14 32 30 14 37 | 14 20 20 0d 0a 00 0d 0a |3.7.20.7|. .....|
|000051e0| 00 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0a 00 20 20 20 |........|..... |
|000051f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005200| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005210| 20 20 20 20 20 20 20 20 | 20 20 20 20 32 0d 0b 00 | | 2...|
|00005220| 20 20 20 20 20 20 20 20 | 20 49 6e 74 65 72 63 65 | | Interce|
|00005230| 70 74 73 3a 20 28 30 2c | 20 32 29 20 20 20 20 49 |pts: (0,| 2) I|
|00005240| 6e 74 65 72 63 65 70 74 | 73 3a 20 28 30 2c 20 11 |ntercept|s: (0, .|
|00005250| 34 32 11 31 29 20 20 20 | 20 49 6e 74 65 72 63 65 |42.1) | Interce|
|00005260| 70 74 73 3a 20 28 30 2c | 20 32 29 0d 0b 00 20 20 |pts: (0,| 2)... |
|00005270| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005280| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005290| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 33 0d 0a | | 3..|
|000052a0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000052b0| 20 20 20 20 20 20 20 20 | 32 20 20 20 20 20 20 20 | |2 |
|000052c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000052d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000052e0| 20 20 20 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 2... | |
|000052f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 28 2d 11 34 | | (-.4|
|00005300| 32 11 31 2c 20 30 29 20 | 20 20 20 20 20 20 20 20 |2.1, 0) | |
|00005310| 20 20 20 20 20 20 28 32 | 2c 20 30 29 20 20 20 20 | (2|, 0) |
|00005320| 20 20 20 20 20 20 20 20 | 20 20 20 20 28 11 34 32 | | (.42|
|00005330| 11 31 2c 20 30 29 0d 0b | 00 20 20 20 20 20 20 20 |.1, 0)..|. |
|00005340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005350| 33 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |3 | |
|00005360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005370| 20 20 20 20 20 20 20 20 | 20 20 20 33 0d 0a 00 0d | | 3....|
|00005380| 0a 00 20 20 20 20 20 0e | 33 2d 32 2d 33 39 64 0e |.. .|3-2-39d.|
|00005390| 28 64 29 0f 20 4e 6f 6e | 65 20 6f 66 20 74 68 65 |(d). Non|e of the|
|000053a0| 73 65 0d 0a 00 0d 0a 00 | 59 6f 75 20 6d 61 79 20 |se......|You may |
|000053b0| 77 61 6e 74 20 74 6f 20 | 72 65 76 69 65 77 20 10 |want to |review .|
|000053c0| 31 2d 31 2d 32 0e 69 31 | 2d 31 2d 31 0e 49 6e 74 |1-1-2.i1|-1-1.Int|
|000053d0| 65 67 72 61 74 65 64 20 | 45 78 61 6d 70 6c 65 20 |egrated |Example |
|000053e0| 31 2e 0f 0d 0a 00 53 65 | 63 74 69 6f 6e 20 31 2e |1.....Se|ction 1.|
|000053f0| 31 20 20 47 72 61 70 68 | 73 20 61 6e 64 20 47 72 |1 Graph|s and Gr|
|00005400| 61 70 68 69 6e 67 20 55 | 74 69 6c 69 74 69 65 73 |aphing U|tilities|
|00005410| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005420| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005430| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 0d 0b | | .22..|
|00005440| 00 20 11 31 39 2e 20 20 | 53 6b 65 74 63 68 20 74 |. .19. |Sketch t|
|00005450| 68 65 20 67 72 61 70 68 | 20 6f 66 20 74 68 65 20 |he graph| of the |
|00005460| 65 71 75 61 74 69 6f 6e | 20 11 33 79 20 11 31 3d |equation| .3y .1=|
|00005470| 20 11 33 78 20 20 11 31 | 2d 20 34 11 33 78 20 11 | .3x .1|- 4.3x .|
|00005480| 31 2b 20 33 2e 20 20 49 | 64 65 6e 74 69 66 79 20 |1+ 3. I|dentify |
|00005490| 61 6e 79 20 0d 0a 00 20 | 20 20 20 20 69 6e 74 65 |any ... | inte|
|000054a0| 72 63 65 70 74 73 20 61 | 6e 64 20 74 65 73 74 20 |rcepts a|nd test |
|000054b0| 66 6f 72 20 73 79 6d 6d | 65 74 72 79 2e 0d 0a 00 |for symm|etry....|
|000054c0| 0d 0a 00 20 20 20 20 20 | 0e 33 2d 32 2d 34 33 61 |... |.3-2-43a|
|000054d0| 0e 28 61 29 0f 20 20 20 | 20 20 20 20 20 20 20 20 |.(a). | |
|000054e0| 20 20 20 20 20 20 20 20 | 0e 33 2d 32 2d 34 33 62 | |.3-2-43b|
|000054f0| 0e 28 62 29 0f 20 20 20 | 20 20 20 20 20 20 20 20 |.(b). | |
|00005500| 20 20 20 20 20 20 20 20 | 0e 33 2d 32 2d 34 33 63 | |.3-2-43c|
|00005510| 0e 28 63 29 0f 0d 0a 00 | 14 6a 33 2d 32 2d 34 33 |.(c)....|.j3-2-43|
|00005520| 61 2e 6d 14 39 14 37 14 | 32 30 14 37 14 20 20 14 |a.m.9.7.|20.7. .|
|00005530| 6a 33 2d 32 2d 34 33 62 | 2e 6d 14 33 31 14 37 14 |j3-2-43b|.m.31.7.|
|00005540| 32 30 14 37 14 20 20 14 | 6a 33 2d 32 2d 34 33 63 |20.7. .|j3-2-43c|
|00005550| 2e 6d 14 35 33 14 37 14 | 32 30 14 37 14 20 20 0d |.m.53.7.|20.7. .|
|00005560| 0a 00 0d 0a 00 0d 0a 00 | 0d 0a 00 0d 0a 00 0d 0a |........|........|
|00005570| 00 20 20 20 20 20 20 20 | 20 20 49 6e 74 65 72 63 |. | Interc|
|00005580| 65 70 74 73 3a 20 28 30 | 2c 20 33 29 20 20 20 20 |epts: (0|, 3) |
|00005590| 49 6e 74 65 72 63 65 70 | 74 73 3a 20 28 30 2c 20 |Intercep|ts: (0, |
|000055a0| 33 29 20 20 20 20 49 6e | 74 65 72 63 65 70 74 73 |3) In|tercepts|
|000055b0| 3a 20 28 30 2c 20 33 29 | 0d 0a 00 20 20 20 20 20 |: (0, 3)|... |
|000055c0| 20 20 20 20 20 20 28 2d | 33 2c 20 30 29 2c 20 28 | (-|3, 0), (|
|000055d0| 2d 31 2c 20 30 29 20 20 | 20 20 20 20 20 20 28 33 |-1, 0) | (3|
|000055e0| 2c 20 30 29 2c 20 28 31 | 2c 20 30 29 20 20 20 20 |, 0), (1|, 0) |
|000055f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 28 33 2c 20 | | (3, |
|00005600| 30 29 0d 0a 00 0d 0a 00 | 20 20 20 20 20 0e 33 2d |0)......| .3-|
|00005610| 32 2d 34 33 64 0e 28 64 | 29 0f 20 4e 6f 6e 65 20 |2-43d.(d|). None |
|00005620| 6f 66 20 74 68 65 73 65 | 0d 0a 00 0d 0a 00 59 6f |of these|......Yo|
|00005630| 75 20 6d 61 79 20 77 61 | 6e 74 20 74 6f 20 72 65 |u may wa|nt to re|
|00005640| 76 69 65 77 20 10 31 2d | 31 2d 32 0e 69 31 2d 31 |view .1-|1-2.i1-1|
|00005650| 2d 32 0e 49 6e 74 65 67 | 72 61 74 65 64 20 45 78 |-2.Integ|rated Ex|
|00005660| 61 6d 70 6c 65 20 32 2e | 0f 0d 0a 00 14 00 00 00 |ample 2.|........|
|00005670| 97 01 00 00 50 00 04 00 | 14 00 00 00 10 00 00 00 |....P...|........|
|00005680| 33 2d 32 2d 31 35 61 00 | af 01 00 00 9e 01 00 00 |3-2-15a.|........|
|00005690| 50 00 04 00 af 01 00 00 | ab 01 00 00 33 2d 32 2d |P.......|....3-2-|
|000056a0| 31 35 62 00 51 03 00 00 | 9e 01 00 00 50 00 04 00 |15b.Q...|....P...|
|000056b0| 51 03 00 00 4d 03 00 00 | 33 2d 32 2d 31 35 63 00 |Q...M...|3-2-15c.|
|000056c0| f3 04 00 00 5e 00 00 00 | 50 00 04 00 f3 04 00 00 |....^...|P.......|
|000056d0| ef 04 00 00 33 2d 32 2d | 31 35 64 00 55 05 00 00 |....3-2-|15d.U...|
|000056e0| f1 00 00 00 50 00 04 00 | 55 05 00 00 51 05 00 00 |....P...|U...Q...|
|000056f0| 33 2d 32 2d 31 39 61 00 | 4a 06 00 00 25 01 00 00 |3-2-19a.|J...%...|
|00005700| 50 00 04 00 4a 06 00 00 | 46 06 00 00 33 2d 32 2d |P...J...|F...3-2-|
|00005710| 31 39 62 00 73 07 00 00 | 4a 00 00 00 50 00 04 00 |19b.s...|J...P...|
|00005720| 73 07 00 00 6f 07 00 00 | 33 2d 32 2d 31 39 63 00 |s...o...|3-2-19c.|
|00005730| c1 07 00 00 4d 00 00 00 | 50 00 04 00 c1 07 00 00 |....M...|P.......|
|00005740| bd 07 00 00 33 2d 32 2d | 31 39 64 00 12 08 00 00 |....3-2-|19d.....|
|00005750| e6 01 00 00 50 00 04 00 | 12 08 00 00 0e 08 00 00 |....P...|........|
|00005760| 33 2d 32 2d 32 33 61 00 | fc 09 00 00 ab 00 00 00 |3-2-23a.|........|
|00005770| 50 00 04 00 fc 09 00 00 | f8 09 00 00 33 2d 32 2d |P.......|....3-2-|
|00005780| 32 33 62 00 ab 0a 00 00 | f6 01 00 00 50 00 04 00 |23b.....|....P...|
|00005790| ab 0a 00 00 a7 0a 00 00 | 33 2d 32 2d 32 33 63 00 |........|3-2-23c.|
|000057a0| a5 0c 00 00 e1 01 00 00 | 50 00 04 00 a5 0c 00 00 |........|P.......|
|000057b0| a1 0c 00 00 33 2d 32 2d | 32 33 64 00 8a 0e 00 00 |....3-2-|23d.....|
|000057c0| 03 02 00 00 50 00 04 00 | 8a 0e 00 00 86 0e 00 00 |....P...|........|
|000057d0| 33 2d 32 2d 32 37 61 00 | 91 10 00 00 f6 01 00 00 |3-2-27a.|........|
|000057e0| 50 00 04 00 91 10 00 00 | 8d 10 00 00 33 2d 32 2d |P.......|....3-2-|
|000057f0| 32 37 62 00 8b 12 00 00 | bf 00 00 00 50 00 04 00 |27b.....|....P...|
|00005800| 8b 12 00 00 87 12 00 00 | 33 2d 32 2d 32 37 63 00 |........|3-2-27c.|
|00005810| 4e 13 00 00 29 02 00 00 | 50 00 04 00 4e 13 00 00 |N...)...|P...N...|
|00005820| 4a 13 00 00 33 2d 32 2d | 32 37 64 00 7b 15 00 00 |J...3-2-|27d.{...|
|00005830| d2 00 00 00 50 00 04 00 | 7b 15 00 00 77 15 00 00 |....P...|{...w...|
|00005840| 33 2d 32 2d 33 39 61 00 | 51 16 00 00 1f 01 00 00 |3-2-39a.|Q.......|
|00005850| 50 00 04 00 51 16 00 00 | 4d 16 00 00 33 2d 32 2d |P...Q...|M...3-2-|
|00005860| 33 39 62 00 74 17 00 00 | 67 00 00 00 50 00 04 00 |39b.t...|g...P...|
|00005870| 74 17 00 00 70 17 00 00 | 33 2d 32 2d 33 39 63 00 |t...p...|3-2-39c.|
|00005880| df 17 00 00 36 00 00 00 | 50 00 04 00 df 17 00 00 |....6...|P.......|
|00005890| db 17 00 00 33 2d 32 2d | 33 39 64 00 19 18 00 00 |....3-2-|39d.....|
|000058a0| 7a 00 00 00 50 00 04 00 | 19 18 00 00 15 18 00 00 |z...P...|........|
|000058b0| 33 2d 32 2d 34 33 61 00 | 97 18 00 00 4f 00 00 00 |3-2-43a.|....O...|
|000058c0| 50 00 04 00 97 18 00 00 | 93 18 00 00 33 2d 32 2d |P.......|....3-2-|
|000058d0| 34 33 62 00 ea 18 00 00 | b9 01 00 00 50 00 04 00 |43b.....|....P...|
|000058e0| ea 18 00 00 e6 18 00 00 | 33 2d 32 2d 34 33 63 00 |........|3-2-43c.|
|000058f0| a7 1a 00 00 36 00 00 00 | 50 00 04 00 a7 1a 00 00 |....6...|P.......|
|00005900| a3 1a 00 00 33 2d 32 2d | 34 33 64 00 e1 1a 00 00 |....3-2-|43d.....|
|00005910| 4c 02 00 00 50 00 04 00 | e1 1a 00 00 dd 1a 00 00 |L...P...|........|
|00005920| 33 2d 32 2d 34 35 61 00 | 31 1d 00 00 ed 01 00 00 |3-2-45a.|1.......|
|00005930| 50 00 04 00 31 1d 00 00 | 2d 1d 00 00 33 2d 32 2d |P...1...|-...3-2-|
|00005940| 34 35 62 00 22 1f 00 00 | 34 00 00 00 50 00 04 00 |45b."...|4...P...|
|00005950| 22 1f 00 00 1e 1f 00 00 | 33 2d 32 2d 34 35 63 00 |".......|3-2-45c.|
|00005960| 5a 1f 00 00 2a 00 00 00 | 50 00 04 00 5a 1f 00 00 |Z...*...|P...Z...|
|00005970| 56 1f 00 00 33 2d 32 2d | 34 35 64 00 88 1f 00 00 |V...3-2-|45d.....|
|00005980| 1c 01 00 00 50 00 04 00 | 88 1f 00 00 84 1f 00 00 |....P...|........|
|00005990| 33 2d 32 2d 34 39 61 00 | a8 20 00 00 dc 00 00 00 |3-2-49a.|. ......|
|000059a0| 50 00 04 00 a8 20 00 00 | a4 20 00 00 33 2d 32 2d |P.... ..|. ..3-2-|
|000059b0| 34 39 62 00 88 21 00 00 | 43 00 00 00 50 00 04 00 |49b..!..|C...P...|
|000059c0| 88 21 00 00 84 21 00 00 | 33 2d 32 2d 34 39 63 00 |.!...!..|3-2-49c.|
|000059d0| cf 21 00 00 36 00 00 00 | 50 00 04 00 cf 21 00 00 |.!..6...|P....!..|
|000059e0| cb 21 00 00 33 2d 32 2d | 34 39 64 00 09 22 00 00 |.!..3-2-|49d.."..|
|000059f0| 3b 00 00 00 50 00 04 00 | 09 22 00 00 05 22 00 00 |;...P...|."..."..|
|00005a00| 33 2d 32 2d 35 33 61 00 | 48 22 00 00 9e 00 00 00 |3-2-53a.|H"......|
|00005a10| 50 00 04 00 48 22 00 00 | 44 22 00 00 33 2d 32 2d |P...H"..|D"..3-2-|
|00005a20| 35 33 62 00 ea 22 00 00 | 54 01 00 00 50 00 04 00 |53b.."..|T...P...|
|00005a30| ea 22 00 00 e6 22 00 00 | 33 2d 32 2d 35 33 63 00 |."..."..|3-2-53c.|
|00005a40| 42 24 00 00 36 00 00 00 | 50 00 04 00 42 24 00 00 |B$..6...|P...B$..|
|00005a50| 3e 24 00 00 33 2d 32 2d | 35 33 64 00 7c 24 00 00 |>$..3-2-|53d.|$..|
|00005a60| 48 00 00 00 50 00 04 00 | 7c 24 00 00 78 24 00 00 |H...P...||$..x$..|
|00005a70| 33 2d 32 2d 35 35 61 00 | c8 24 00 00 16 01 00 00 |3-2-55a.|.$......|
|00005a80| 50 00 04 00 c8 24 00 00 | c4 24 00 00 33 2d 32 2d |P....$..|.$..3-2-|
|00005a90| 35 35 62 00 e2 25 00 00 | 16 01 00 00 50 00 04 00 |55b..%..|....P...|
|00005aa0| e2 25 00 00 de 25 00 00 | 33 2d 32 2d 35 35 63 00 |.%...%..|3-2-55c.|
|00005ab0| fc 26 00 00 36 00 00 00 | 50 00 04 00 fc 26 00 00 |.&..6...|P....&..|
|00005ac0| f8 26 00 00 33 2d 32 2d | 35 35 64 00 36 27 00 00 |.&..3-2-|55d.6'..|
|00005ad0| 5b 00 00 00 50 00 04 00 | 36 27 00 00 32 27 00 00 |[...P...|6'..2'..|
|00005ae0| 33 2d 32 2d 35 61 00 95 | 27 00 00 5a 00 00 00 50 |3-2-5a..|'..Z...P|
|00005af0| 00 04 00 95 27 00 00 91 | 27 00 00 33 2d 32 2d 35 |....'...|'..3-2-5|
|00005b00| 62 00 f3 27 00 00 4a 00 | 00 00 50 00 04 00 f3 27 |b..'..J.|..P....'|
|00005b10| 00 00 ef 27 00 00 33 2d | 32 2d 35 63 00 41 28 00 |...'..3-|2-5c.A(.|
|00005b20| 00 82 00 00 00 50 00 04 | 00 41 28 00 00 3d 28 00 |.....P..|.A(..=(.|
|00005b30| 00 33 2d 32 2d 35 64 00 | c7 28 00 00 11 03 00 00 |.3-2-5d.|.(......|
|00005b40| 50 00 04 00 c7 28 00 00 | c3 28 00 00 33 2d 32 2d |P....(..|.(..3-2-|
|00005b50| 36 33 61 00 dc 2b 00 00 | 14 02 00 00 50 00 04 00 |63a..+..|....P...|
|00005b60| dc 2b 00 00 d8 2b 00 00 | 33 2d 32 2d 36 33 62 00 |.+...+..|3-2-63b.|
|00005b70| f4 2d 00 00 43 00 00 00 | 50 00 04 00 f4 2d 00 00 |.-..C...|P....-..|
|00005b80| f0 2d 00 00 33 2d 32 2d | 36 33 63 00 3b 2e 00 00 |.-..3-2-|63c.;...|
|00005b90| 14 02 00 00 50 00 04 00 | 3b 2e 00 00 37 2e 00 00 |....P...|;...7...|
|00005ba0| 33 2d 32 2d 36 33 64 00 | 53 30 00 00 9e 00 00 00 |3-2-63d.|S0......|
|00005bb0| 50 00 04 00 53 30 00 00 | 4f 30 00 00 33 2d 32 2d |P...S0..|O0..3-2-|
|00005bc0| 37 33 61 00 f5 30 00 00 | 88 00 00 00 50 00 04 00 |73a..0..|....P...|
|00005bd0| f5 30 00 00 f1 30 00 00 | 33 2d 32 2d 37 33 62 00 |.0...0..|3-2-73b.|
|00005be0| 81 31 00 00 30 00 00 00 | 50 00 04 00 81 31 00 00 |.1..0...|P....1..|
|00005bf0| 7d 31 00 00 33 2d 32 2d | 37 33 63 00 b5 31 00 00 |}1..3-2-|73c..1..|
|00005c00| 36 00 00 00 50 00 04 00 | b5 31 00 00 b1 31 00 00 |6...P...|.1...1..|
|00005c10| 33 2d 32 2d 37 33 64 00 | 15 32 00 00 f0 01 00 00 |3-2-73d.|.2......|
|00005c20| 4d 2a 00 00 eb 31 00 00 | 00 00 00 00 78 31 2d 31 |M*...1..|....x1-1|
|00005c30| 00 2f 34 00 00 86 02 00 | 00 4d 2a 00 00 05 34 00 |./4.....|.M*...4.|
|00005c40| 00 00 00 00 00 78 31 2d | 31 2d 31 00 df 36 00 00 |.....x1-|1-1..6..|
|00005c50| 44 03 00 00 4d 2a 00 00 | b5 36 00 00 00 00 00 00 |D...M*..|.6......|
|00005c60| 78 31 2d 31 2d 31 30 00 | 4d 3a 00 00 2e 02 00 00 |x1-1-10.|M:......|
|00005c70| 4d 2a 00 00 23 3a 00 00 | 00 00 00 00 78 31 2d 31 |M*..#:..|....x1-1|
|00005c80| 2d 31 31 00 a5 3c 00 00 | 28 02 00 00 4d 2a 00 00 |-11..<..|(...M*..|
|00005c90| 7b 3c 00 00 00 00 00 00 | 78 31 2d 31 2d 31 32 00 |{<......|x1-1-12.|
|00005ca0| f7 3e 00 00 37 02 00 00 | 4d 2a 00 00 cd 3e 00 00 |.>..7...|M*...>..|
|00005cb0| 00 00 00 00 78 31 2d 31 | 2d 31 33 00 58 41 00 00 |....x1-1|-13.XA..|
|00005cc0| 23 02 00 00 4d 2a 00 00 | 2e 41 00 00 00 00 00 00 |#...M*..|.A......|
|00005cd0| 78 31 2d 31 2d 32 00 a5 | 43 00 00 4c 03 00 00 4d |x1-1-2..|C..L...M|
|00005ce0| 2a 00 00 7b 43 00 00 00 | 00 00 00 78 31 2d 31 2d |*..{C...|...x1-1-|
|00005cf0| 33 00 1b 47 00 00 8a 01 | 00 00 4d 2a 00 00 f1 46 |3..G....|..M*...F|
|00005d00| 00 00 00 00 00 00 78 31 | 2d 31 2d 34 00 cf 48 00 |......x1|-1-4..H.|
|00005d10| 00 d1 01 00 00 4d 2a 00 | 00 a5 48 00 00 00 00 00 |.....M*.|..H.....|
|00005d20| 00 78 31 2d 31 2d 35 00 | ca 4a 00 00 1e 02 00 00 |.x1-1-5.|.J......|
|00005d30| 4d 2a 00 00 a0 4a 00 00 | 00 00 00 00 78 31 2d 31 |M*...J..|....x1-1|
|00005d40| 2d 36 00 12 4d 00 00 88 | 03 00 00 4d 2a 00 00 e8 |-6..M...|...M*...|
|00005d50| 4c 00 00 00 00 00 00 78 | 31 2d 31 2d 37 00 c4 50 |L......x|1-1-7..P|
|00005d60| 00 00 22 03 00 00 4d 2a | 00 00 9a 50 00 00 00 00 |.."...M*|...P....|
|00005d70| 00 00 78 31 2d 31 2d 38 | 00 10 54 00 00 5c 02 00 |..x1-1-8|..T..\..|
|00005d80| 00 4d 2a 00 00 e6 53 00 | 00 00 00 00 00 78 31 2d |.M*...S.|.....x1-|
|00005d90| 31 2d 39 00 | |1-9. | |
+--------+-------------------------+-------------------------+--------+--------+